Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{3+2}{3}-\frac{3\times 2+1}{2}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Whakareatia te 1 ki te 3, ka 3.
\frac{\frac{5}{3}-\frac{3\times 2+1}{2}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Tāpirihia te 3 ki te 2, ka 5.
\frac{\frac{5}{3}-\frac{6+1}{2}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Whakareatia te 3 ki te 2, ka 6.
\frac{\frac{5}{3}-\frac{7}{2}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Tāpirihia te 6 ki te 1, ka 7.
\frac{\frac{10}{6}-\frac{21}{6}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{5}{3} me \frac{7}{2} ki te hautau me te tautūnga 6.
\frac{\frac{10-21}{6}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Tā te mea he rite te tauraro o \frac{10}{6} me \frac{21}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{11}{6}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Tangohia te 21 i te 10, ka -11.
\frac{-\frac{11}{6}}{\frac{10+1}{5}-\frac{3\times 3+2}{3}}
Whakareatia te 2 ki te 5, ka 10.
\frac{-\frac{11}{6}}{\frac{11}{5}-\frac{3\times 3+2}{3}}
Tāpirihia te 10 ki te 1, ka 11.
\frac{-\frac{11}{6}}{\frac{11}{5}-\frac{9+2}{3}}
Whakareatia te 3 ki te 3, ka 9.
\frac{-\frac{11}{6}}{\frac{11}{5}-\frac{11}{3}}
Tāpirihia te 9 ki te 2, ka 11.
\frac{-\frac{11}{6}}{\frac{33}{15}-\frac{55}{15}}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{11}{5} me \frac{11}{3} ki te hautau me te tautūnga 15.
\frac{-\frac{11}{6}}{\frac{33-55}{15}}
Tā te mea he rite te tauraro o \frac{33}{15} me \frac{55}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{11}{6}}{-\frac{22}{15}}
Tangohia te 55 i te 33, ka -22.
-\frac{11}{6}\left(-\frac{15}{22}\right)
Whakawehe -\frac{11}{6} ki te -\frac{22}{15} mā te whakarea -\frac{11}{6} ki te tau huripoki o -\frac{22}{15}.
\frac{-11\left(-15\right)}{6\times 22}
Me whakarea te -\frac{11}{6} ki te -\frac{15}{22} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{165}{132}
Mahia ngā whakarea i roto i te hautanga \frac{-11\left(-15\right)}{6\times 22}.
\frac{5}{4}
Whakahekea te hautanga \frac{165}{132} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 33.