Aromātai
\frac{5}{4}=1.25
Tauwehe
\frac{5}{2 ^ {2}} = 1\frac{1}{4} = 1.25
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{3+2}{3}-\frac{3\times 2+1}{2}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Whakareatia te 1 ki te 3, ka 3.
\frac{\frac{5}{3}-\frac{3\times 2+1}{2}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Tāpirihia te 3 ki te 2, ka 5.
\frac{\frac{5}{3}-\frac{6+1}{2}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Whakareatia te 3 ki te 2, ka 6.
\frac{\frac{5}{3}-\frac{7}{2}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Tāpirihia te 6 ki te 1, ka 7.
\frac{\frac{10}{6}-\frac{21}{6}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{5}{3} me \frac{7}{2} ki te hautau me te tautūnga 6.
\frac{\frac{10-21}{6}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Tā te mea he rite te tauraro o \frac{10}{6} me \frac{21}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{11}{6}}{\frac{2\times 5+1}{5}-\frac{3\times 3+2}{3}}
Tangohia te 21 i te 10, ka -11.
\frac{-\frac{11}{6}}{\frac{10+1}{5}-\frac{3\times 3+2}{3}}
Whakareatia te 2 ki te 5, ka 10.
\frac{-\frac{11}{6}}{\frac{11}{5}-\frac{3\times 3+2}{3}}
Tāpirihia te 10 ki te 1, ka 11.
\frac{-\frac{11}{6}}{\frac{11}{5}-\frac{9+2}{3}}
Whakareatia te 3 ki te 3, ka 9.
\frac{-\frac{11}{6}}{\frac{11}{5}-\frac{11}{3}}
Tāpirihia te 9 ki te 2, ka 11.
\frac{-\frac{11}{6}}{\frac{33}{15}-\frac{55}{15}}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{11}{5} me \frac{11}{3} ki te hautau me te tautūnga 15.
\frac{-\frac{11}{6}}{\frac{33-55}{15}}
Tā te mea he rite te tauraro o \frac{33}{15} me \frac{55}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{11}{6}}{-\frac{22}{15}}
Tangohia te 55 i te 33, ka -22.
-\frac{11}{6}\left(-\frac{15}{22}\right)
Whakawehe -\frac{11}{6} ki te -\frac{22}{15} mā te whakarea -\frac{11}{6} ki te tau huripoki o -\frac{22}{15}.
\frac{-11\left(-15\right)}{6\times 22}
Me whakarea te -\frac{11}{6} ki te -\frac{15}{22} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{165}{132}
Mahia ngā whakarea i roto i te hautanga \frac{-11\left(-15\right)}{6\times 22}.
\frac{5}{4}
Whakahekea te hautanga \frac{165}{132} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 33.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}