Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1^{80}+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 35 me te 9 kia riro ai te 44.
\frac{1+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}}
Tātaihia te 1 mā te pū o 80, kia riro ko 1.
\frac{1+1-3i^{26}+2i^{14}}{9+2i-1^{44}}
Tātaihia te i mā te pū o 12, kia riro ko 1.
\frac{2-3i^{26}+2i^{14}}{9+2i-1^{44}}
Tāpirihia te 1 ki te 1, ka 2.
\frac{2-3\left(-1\right)+2i^{14}}{9+2i-1^{44}}
Tātaihia te i mā te pū o 26, kia riro ko -1.
\frac{2-\left(-3\right)+2i^{14}}{9+2i-1^{44}}
Whakareatia te 3 ki te -1, ka -3.
\frac{2+3+2i^{14}}{9+2i-1^{44}}
Ko te tauaro o -3 ko 3.
\frac{5+2i^{14}}{9+2i-1^{44}}
Tāpirihia te 2 ki te 3, ka 5.
\frac{5+2\left(-1\right)}{9+2i-1^{44}}
Tātaihia te i mā te pū o 14, kia riro ko -1.
\frac{5-2}{9+2i-1^{44}}
Whakareatia te 2 ki te -1, ka -2.
\frac{3}{9+2i-1^{44}}
Tangohia te 2 i te 5, ka 3.
\frac{3}{9+2i-1}
Tātaihia te 1 mā te pū o 44, kia riro ko 1.
\frac{3}{8+2i}
Tangohia te 1 i te 9+2i, ka 8+2i.
\frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 8-2i.
\frac{24-6i}{68}
Mahia ngā whakarea i roto o \frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)}.
\frac{6}{17}-\frac{3}{34}i
Whakawehea te 24-6i ki te 68, kia riro ko \frac{6}{17}-\frac{3}{34}i.
Re(\frac{1^{80}+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 35 me te 9 kia riro ai te 44.
Re(\frac{1+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}})
Tātaihia te 1 mā te pū o 80, kia riro ko 1.
Re(\frac{1+1-3i^{26}+2i^{14}}{9+2i-1^{44}})
Tātaihia te i mā te pū o 12, kia riro ko 1.
Re(\frac{2-3i^{26}+2i^{14}}{9+2i-1^{44}})
Tāpirihia te 1 ki te 1, ka 2.
Re(\frac{2-3\left(-1\right)+2i^{14}}{9+2i-1^{44}})
Tātaihia te i mā te pū o 26, kia riro ko -1.
Re(\frac{2-\left(-3\right)+2i^{14}}{9+2i-1^{44}})
Whakareatia te 3 ki te -1, ka -3.
Re(\frac{2+3+2i^{14}}{9+2i-1^{44}})
Ko te tauaro o -3 ko 3.
Re(\frac{5+2i^{14}}{9+2i-1^{44}})
Tāpirihia te 2 ki te 3, ka 5.
Re(\frac{5+2\left(-1\right)}{9+2i-1^{44}})
Tātaihia te i mā te pū o 14, kia riro ko -1.
Re(\frac{5-2}{9+2i-1^{44}})
Whakareatia te 2 ki te -1, ka -2.
Re(\frac{3}{9+2i-1^{44}})
Tangohia te 2 i te 5, ka 3.
Re(\frac{3}{9+2i-1})
Tātaihia te 1 mā te pū o 44, kia riro ko 1.
Re(\frac{3}{8+2i})
Tangohia te 1 i te 9+2i, ka 8+2i.
Re(\frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)})
Me whakarea te taurunga me te tauraro o \frac{3}{8+2i} ki te haumi hiato o te tauraro, 8-2i.
Re(\frac{24-6i}{68})
Mahia ngā whakarea i roto o \frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)}.
Re(\frac{6}{17}-\frac{3}{34}i)
Whakawehea te 24-6i ki te 68, kia riro ko \frac{6}{17}-\frac{3}{34}i.
\frac{6}{17}
Ko te wāhi tūturu o \frac{6}{17}-\frac{3}{34}i ko \frac{6}{17}.