Aromātai
\frac{6}{17}-\frac{3}{34}i\approx 0.352941176-0.088235294i
Wāhi Tūturu
\frac{6}{17} = 0.35294117647058826
Tohaina
Kua tāruatia ki te papatopenga
\frac{1^{80}+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 35 me te 9 kia riro ai te 44.
\frac{1+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}}
Tātaihia te 1 mā te pū o 80, kia riro ko 1.
\frac{1+1-3i^{26}+2i^{14}}{9+2i-1^{44}}
Tātaihia te i mā te pū o 12, kia riro ko 1.
\frac{2-3i^{26}+2i^{14}}{9+2i-1^{44}}
Tāpirihia te 1 ki te 1, ka 2.
\frac{2-3\left(-1\right)+2i^{14}}{9+2i-1^{44}}
Tātaihia te i mā te pū o 26, kia riro ko -1.
\frac{2-\left(-3\right)+2i^{14}}{9+2i-1^{44}}
Whakareatia te 3 ki te -1, ka -3.
\frac{2+3+2i^{14}}{9+2i-1^{44}}
Ko te tauaro o -3 ko 3.
\frac{5+2i^{14}}{9+2i-1^{44}}
Tāpirihia te 2 ki te 3, ka 5.
\frac{5+2\left(-1\right)}{9+2i-1^{44}}
Tātaihia te i mā te pū o 14, kia riro ko -1.
\frac{5-2}{9+2i-1^{44}}
Whakareatia te 2 ki te -1, ka -2.
\frac{3}{9+2i-1^{44}}
Tangohia te 2 i te 5, ka 3.
\frac{3}{9+2i-1}
Tātaihia te 1 mā te pū o 44, kia riro ko 1.
\frac{3}{8+2i}
Tangohia te 1 i te 9+2i, ka 8+2i.
\frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 8-2i.
\frac{24-6i}{68}
Mahia ngā whakarea i roto o \frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)}.
\frac{6}{17}-\frac{3}{34}i
Whakawehea te 24-6i ki te 68, kia riro ko \frac{6}{17}-\frac{3}{34}i.
Re(\frac{1^{80}+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 35 me te 9 kia riro ai te 44.
Re(\frac{1+i^{12}-3i^{26}+2i^{14}}{9+2i-1^{44}})
Tātaihia te 1 mā te pū o 80, kia riro ko 1.
Re(\frac{1+1-3i^{26}+2i^{14}}{9+2i-1^{44}})
Tātaihia te i mā te pū o 12, kia riro ko 1.
Re(\frac{2-3i^{26}+2i^{14}}{9+2i-1^{44}})
Tāpirihia te 1 ki te 1, ka 2.
Re(\frac{2-3\left(-1\right)+2i^{14}}{9+2i-1^{44}})
Tātaihia te i mā te pū o 26, kia riro ko -1.
Re(\frac{2-\left(-3\right)+2i^{14}}{9+2i-1^{44}})
Whakareatia te 3 ki te -1, ka -3.
Re(\frac{2+3+2i^{14}}{9+2i-1^{44}})
Ko te tauaro o -3 ko 3.
Re(\frac{5+2i^{14}}{9+2i-1^{44}})
Tāpirihia te 2 ki te 3, ka 5.
Re(\frac{5+2\left(-1\right)}{9+2i-1^{44}})
Tātaihia te i mā te pū o 14, kia riro ko -1.
Re(\frac{5-2}{9+2i-1^{44}})
Whakareatia te 2 ki te -1, ka -2.
Re(\frac{3}{9+2i-1^{44}})
Tangohia te 2 i te 5, ka 3.
Re(\frac{3}{9+2i-1})
Tātaihia te 1 mā te pū o 44, kia riro ko 1.
Re(\frac{3}{8+2i})
Tangohia te 1 i te 9+2i, ka 8+2i.
Re(\frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)})
Me whakarea te taurunga me te tauraro o \frac{3}{8+2i} ki te haumi hiato o te tauraro, 8-2i.
Re(\frac{24-6i}{68})
Mahia ngā whakarea i roto o \frac{3\left(8-2i\right)}{\left(8+2i\right)\left(8-2i\right)}.
Re(\frac{6}{17}-\frac{3}{34}i)
Whakawehea te 24-6i ki te 68, kia riro ko \frac{6}{17}-\frac{3}{34}i.
\frac{6}{17}
Ko te wāhi tūturu o \frac{6}{17}-\frac{3}{34}i ko \frac{6}{17}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}