Aromātai
\frac{x^{2}}{262144}
Kimi Pārōnaki e ai ki x
\frac{x}{131072}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 1 ^ { 2 } x ^ { 2 } / 16 ^ { 2 } } { 64 \times 16 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1x^{2}}{16^{2}}}{64\times 16}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{\frac{1x^{2}}{256}}{64\times 16}
Tātaihia te 16 mā te pū o 2, kia riro ko 256.
\frac{\frac{1x^{2}}{256}}{1024}
Whakareatia te 64 ki te 16, ka 1024.
\frac{1x^{2}}{256\times 1024}
Tuhia te \frac{\frac{1x^{2}}{256}}{1024} hei hautanga kotahi.
\frac{x^{2}}{256\times 1024}
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{x^{2}}{262144}
Whakareatia te 256 ki te 1024, ka 262144.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1x^{2}}{16^{2}}}{64\times 16})
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1x^{2}}{256}}{64\times 16})
Tātaihia te 16 mā te pū o 2, kia riro ko 256.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1x^{2}}{256}}{1024})
Whakareatia te 64 ki te 16, ka 1024.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1x^{2}}{256\times 1024})
Tuhia te \frac{\frac{1x^{2}}{256}}{1024} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}}{256\times 1024})
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}}{262144})
Whakareatia te 256 ki te 1024, ka 262144.
2\times \frac{1}{262144}x^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{1}{131072}x^{2-1}
Whakareatia 2 ki te \frac{1}{262144}.
\frac{1}{131072}x^{1}
Tango 1 mai i 2.
\frac{1}{131072}x
Mō tētahi kupu t, t^{1}=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}