Whakaoti mō v
v=9
Tohaina
Kua tāruatia ki te papatopenga
30\left(\frac{1}{5}-1\right)=\left(v-15\right)\left(1\times 5-1\right)
Tē taea kia ōrite te tāupe v ki 15 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 30\left(v-15\right), arā, te tauraro pātahi he tino iti rawa te kitea o v-15,30.
30\left(-\frac{4}{5}\right)=\left(v-15\right)\left(1\times 5-1\right)
Tangohia te 1 i te \frac{1}{5}, ka -\frac{4}{5}.
-24=\left(v-15\right)\left(1\times 5-1\right)
Whakareatia te 30 ki te -\frac{4}{5}, ka -24.
-24=\left(v-15\right)\left(5-1\right)
Whakareatia te 1 ki te 5, ka 5.
-24=\left(v-15\right)\times 4
Tangohia te 1 i te 5, ka 4.
-24=4v-60
Whakamahia te āhuatanga tohatoha hei whakarea te v-15 ki te 4.
4v-60=-24
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4v=-24+60
Me tāpiri te 60 ki ngā taha e rua.
4v=36
Tāpirihia te -24 ki te 60, ka 36.
v=\frac{36}{4}
Whakawehea ngā taha e rua ki te 4.
v=9
Whakawehea te 36 ki te 4, kia riro ko 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}