Whakaoti mō z
z=i
Tohaina
Kua tāruatia ki te papatopenga
1+i=\left(1-i\right)z
Tē taea kia ōrite te tāupe z ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te z.
\left(1-i\right)z=1+i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
z=\frac{1+i}{1-i}
Whakawehea ngā taha e rua ki te 1-i.
z=\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Me whakarea te taurunga me te tauraro o \frac{1+i}{1-i} ki te haumi hiato o te tauraro, 1+i.
z=\frac{\left(1+i\right)\left(1+i\right)}{1^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(1+i\right)\left(1+i\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
z=\frac{1\times 1+i+i+i^{2}}{2}
Me whakarea ngā tau matatini 1+i me 1+i pēnā i te whakarea huarua.
z=\frac{1\times 1+i+i-1}{2}
Hei tōna tikanga, ko te i^{2} ko -1.
z=\frac{1+i+i-1}{2}
Mahia ngā whakarea i roto o 1\times 1+i+i-1.
z=\frac{1-1+\left(1+1\right)i}{2}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 1+i+i-1.
z=\frac{2i}{2}
Mahia ngā tāpiri i roto o 1-1+\left(1+1\right)i.
z=i
Whakawehea te 2i ki te 2, kia riro ko i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}