Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1+i=\left(1-i\right)z
Tē taea kia ōrite te tāupe z ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te z.
\left(1-i\right)z=1+i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
z=\frac{1+i}{1-i}
Whakawehea ngā taha e rua ki te 1-i.
z=\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Me whakarea te taurunga me te tauraro o \frac{1+i}{1-i} ki te haumi hiato o te tauraro, 1+i.
z=\frac{\left(1+i\right)\left(1+i\right)}{1^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(1+i\right)\left(1+i\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
z=\frac{1\times 1+i+i+i^{2}}{2}
Me whakarea ngā tau matatini 1+i me 1+i pēnā i te whakarea huarua.
z=\frac{1\times 1+i+i-1}{2}
Hei tōna tikanga, ko te i^{2} ko -1.
z=\frac{1+i+i-1}{2}
Mahia ngā whakarea i roto o 1\times 1+i+i-1.
z=\frac{1-1+\left(1+1\right)i}{2}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 1+i+i-1.
z=\frac{2i}{2}
Mahia ngā tāpiri i roto o 1-1+\left(1+1\right)i.
z=i
Whakawehea te 2i ki te 2, kia riro ko i.