Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(1+i\right)\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 3+2i.
\frac{\left(1+i\right)\left(3+2i\right)}{3^{2}-2^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\right)\left(3+2i\right)}{13}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{1\times 3+1\times \left(2i\right)+3i+2i^{2}}{13}
Me whakarea ngā tau matatini 1+i me 3+2i pēnā i te whakarea huarua.
\frac{1\times 3+1\times \left(2i\right)+3i+2\left(-1\right)}{13}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{3+2i+3i-2}{13}
Mahia ngā whakarea i roto o 1\times 3+1\times \left(2i\right)+3i+2\left(-1\right).
\frac{3-2+\left(2+3\right)i}{13}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 3+2i+3i-2.
\frac{1+5i}{13}
Mahia ngā tāpiri i roto o 3-2+\left(2+3\right)i.
\frac{1}{13}+\frac{5}{13}i
Whakawehea te 1+5i ki te 13, kia riro ko \frac{1}{13}+\frac{5}{13}i.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)})
Me whakarea te taurunga me te tauraro o \frac{1+i}{3-2i} ki te haumi hiato o te tauraro, 3+2i.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{3^{2}-2^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{13})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{1\times 3+1\times \left(2i\right)+3i+2i^{2}}{13})
Me whakarea ngā tau matatini 1+i me 3+2i pēnā i te whakarea huarua.
Re(\frac{1\times 3+1\times \left(2i\right)+3i+2\left(-1\right)}{13})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{3+2i+3i-2}{13})
Mahia ngā whakarea i roto o 1\times 3+1\times \left(2i\right)+3i+2\left(-1\right).
Re(\frac{3-2+\left(2+3\right)i}{13})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 3+2i+3i-2.
Re(\frac{1+5i}{13})
Mahia ngā tāpiri i roto o 3-2+\left(2+3\right)i.
Re(\frac{1}{13}+\frac{5}{13}i)
Whakawehea te 1+5i ki te 13, kia riro ko \frac{1}{13}+\frac{5}{13}i.
\frac{1}{13}
Ko te wāhi tūturu o \frac{1}{13}+\frac{5}{13}i ko \frac{1}{13}.