Aromātai
\frac{1}{13}+\frac{5}{13}i\approx 0.076923077+0.384615385i
Wāhi Tūturu
\frac{1}{13} = 0.07692307692307693
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(1+i\right)\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 3+2i.
\frac{\left(1+i\right)\left(3+2i\right)}{3^{2}-2^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\right)\left(3+2i\right)}{13}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{1\times 3+1\times \left(2i\right)+3i+2i^{2}}{13}
Me whakarea ngā tau matatini 1+i me 3+2i pēnā i te whakarea huarua.
\frac{1\times 3+1\times \left(2i\right)+3i+2\left(-1\right)}{13}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{3+2i+3i-2}{13}
Mahia ngā whakarea i roto o 1\times 3+1\times \left(2i\right)+3i+2\left(-1\right).
\frac{3-2+\left(2+3\right)i}{13}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 3+2i+3i-2.
\frac{1+5i}{13}
Mahia ngā tāpiri i roto o 3-2+\left(2+3\right)i.
\frac{1}{13}+\frac{5}{13}i
Whakawehea te 1+5i ki te 13, kia riro ko \frac{1}{13}+\frac{5}{13}i.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)})
Me whakarea te taurunga me te tauraro o \frac{1+i}{3-2i} ki te haumi hiato o te tauraro, 3+2i.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{3^{2}-2^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{13})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{1\times 3+1\times \left(2i\right)+3i+2i^{2}}{13})
Me whakarea ngā tau matatini 1+i me 3+2i pēnā i te whakarea huarua.
Re(\frac{1\times 3+1\times \left(2i\right)+3i+2\left(-1\right)}{13})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{3+2i+3i-2}{13})
Mahia ngā whakarea i roto o 1\times 3+1\times \left(2i\right)+3i+2\left(-1\right).
Re(\frac{3-2+\left(2+3\right)i}{13})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 3+2i+3i-2.
Re(\frac{1+5i}{13})
Mahia ngā tāpiri i roto o 3-2+\left(2+3\right)i.
Re(\frac{1}{13}+\frac{5}{13}i)
Whakawehea te 1+5i ki te 13, kia riro ko \frac{1}{13}+\frac{5}{13}i.
\frac{1}{13}
Ko te wāhi tūturu o \frac{1}{13}+\frac{5}{13}i ko \frac{1}{13}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}