Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}+\frac{2-i}{5i}
Me whakarea te taurunga me te tauraro o \frac{1+2i}{3-i} ki te haumi hiato o te tauraro, 3+i.
\frac{1+7i}{10}+\frac{2-i}{5i}
Mahia ngā whakarea i roto o \frac{\left(1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
\frac{1}{10}+\frac{7}{10}i+\frac{2-i}{5i}
Whakawehea te 1+7i ki te 10, kia riro ko \frac{1}{10}+\frac{7}{10}i.
\frac{1}{10}+\frac{7}{10}i+\frac{1+2i}{-5}
Me whakarea tahi te taurunga me te tauraro o \frac{2-i}{5i} ki te wae pohewa i.
\frac{1}{10}+\frac{7}{10}i+\left(-\frac{1}{5}-\frac{2}{5}i\right)
Whakawehea te 1+2i ki te -5, kia riro ko -\frac{1}{5}-\frac{2}{5}i.
-\frac{1}{10}+\frac{3}{10}i
Tāpirihia te \frac{1}{10}+\frac{7}{10}i ki te -\frac{1}{5}-\frac{2}{5}i, ka -\frac{1}{10}+\frac{3}{10}i.
Re(\frac{\left(1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}+\frac{2-i}{5i})
Me whakarea te taurunga me te tauraro o \frac{1+2i}{3-i} ki te haumi hiato o te tauraro, 3+i.
Re(\frac{1+7i}{10}+\frac{2-i}{5i})
Mahia ngā whakarea i roto o \frac{\left(1+2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
Re(\frac{1}{10}+\frac{7}{10}i+\frac{2-i}{5i})
Whakawehea te 1+7i ki te 10, kia riro ko \frac{1}{10}+\frac{7}{10}i.
Re(\frac{1}{10}+\frac{7}{10}i+\frac{1+2i}{-5})
Me whakarea tahi te taurunga me te tauraro o \frac{2-i}{5i} ki te wae pohewa i.
Re(\frac{1}{10}+\frac{7}{10}i+\left(-\frac{1}{5}-\frac{2}{5}i\right))
Whakawehea te 1+2i ki te -5, kia riro ko -\frac{1}{5}-\frac{2}{5}i.
Re(-\frac{1}{10}+\frac{3}{10}i)
Tāpirihia te \frac{1}{10}+\frac{7}{10}i ki te -\frac{1}{5}-\frac{2}{5}i, ka -\frac{1}{10}+\frac{3}{10}i.
-\frac{1}{10}
Ko te wāhi tūturu o -\frac{1}{10}+\frac{3}{10}i ko -\frac{1}{10}.