Aromātai
-\frac{3}{5}+\frac{4}{5}i=-0.6+0.8i
Wāhi Tūturu
-\frac{3}{5} = -0.6
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(1+2i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 1+2i.
\frac{\left(1+2i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+2i\right)\left(1+2i\right)}{5}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2i^{2}}{5}
Me whakarea ngā tau matatini 1+2i me 1+2i pēnā i te whakarea huarua.
\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right)}{5}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{1+2i+2i-4}{5}
Mahia ngā whakarea i roto o 1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right).
\frac{1-4+\left(2+2\right)i}{5}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 1+2i+2i-4.
\frac{-3+4i}{5}
Mahia ngā tāpiri i roto o 1-4+\left(2+2\right)i.
-\frac{3}{5}+\frac{4}{5}i
Whakawehea te -3+4i ki te 5, kia riro ko -\frac{3}{5}+\frac{4}{5}i.
Re(\frac{\left(1+2i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)})
Me whakarea te taurunga me te tauraro o \frac{1+2i}{1-2i} ki te haumi hiato o te tauraro, 1+2i.
Re(\frac{\left(1+2i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+2i\right)\left(1+2i\right)}{5})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2i^{2}}{5})
Me whakarea ngā tau matatini 1+2i me 1+2i pēnā i te whakarea huarua.
Re(\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right)}{5})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{1+2i+2i-4}{5})
Mahia ngā whakarea i roto o 1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right).
Re(\frac{1-4+\left(2+2\right)i}{5})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 1+2i+2i-4.
Re(\frac{-3+4i}{5})
Mahia ngā tāpiri i roto o 1-4+\left(2+2\right)i.
Re(-\frac{3}{5}+\frac{4}{5}i)
Whakawehea te -3+4i ki te 5, kia riro ko -\frac{3}{5}+\frac{4}{5}i.
-\frac{3}{5}
Ko te wāhi tūturu o -\frac{3}{5}+\frac{4}{5}i ko -\frac{3}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}