Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2}{2-i}
Tāpirihia te 1 ki te 1, ka 2.
\frac{2\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 2+i.
\frac{2\left(2+i\right)}{2^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(2+i\right)}{5}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{2\times 2+2i}{5}
Whakareatia 2 ki te 2+i.
\frac{4+2i}{5}
Mahia ngā whakarea i roto o 2\times 2+2i.
\frac{4}{5}+\frac{2}{5}i
Whakawehea te 4+2i ki te 5, kia riro ko \frac{4}{5}+\frac{2}{5}i.
Re(\frac{2}{2-i})
Tāpirihia te 1 ki te 1, ka 2.
Re(\frac{2\left(2+i\right)}{\left(2-i\right)\left(2+i\right)})
Me whakarea te taurunga me te tauraro o \frac{2}{2-i} ki te haumi hiato o te tauraro, 2+i.
Re(\frac{2\left(2+i\right)}{2^{2}-i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2\left(2+i\right)}{5})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{2\times 2+2i}{5})
Whakareatia 2 ki te 2+i.
Re(\frac{4+2i}{5})
Mahia ngā whakarea i roto o 2\times 2+2i.
Re(\frac{4}{5}+\frac{2}{5}i)
Whakawehea te 4+2i ki te 5, kia riro ko \frac{4}{5}+\frac{2}{5}i.
\frac{4}{5}
Ko te wāhi tūturu o \frac{4}{5}+\frac{2}{5}i ko \frac{4}{5}.