Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1+5}{\sqrt{3}+\sqrt{5}}
Tātaitia te pūtakerua o 25 kia tae ki 5.
\frac{6}{\sqrt{3}+\sqrt{5}}
Tāpirihia te 1 ki te 5, ka 6.
\frac{6\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{6}{\sqrt{3}+\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}-\sqrt{5}.
\frac{6\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(\sqrt{3}-\sqrt{5}\right)}{3-5}
Pūrua \sqrt{3}. Pūrua \sqrt{5}.
\frac{6\left(\sqrt{3}-\sqrt{5}\right)}{-2}
Tangohia te 5 i te 3, ka -2.
-3\left(\sqrt{3}-\sqrt{5}\right)
Whakawehea te 6\left(\sqrt{3}-\sqrt{5}\right) ki te -2, kia riro ko -3\left(\sqrt{3}-\sqrt{5}\right).
-3\sqrt{3}+3\sqrt{5}
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te \sqrt{3}-\sqrt{5}.