Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{n}{n}+\frac{m}{n}}{n-\frac{m^{2}}{n}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{n}{n}.
\frac{\frac{n+m}{n}}{n-\frac{m^{2}}{n}}
Tā te mea he rite te tauraro o \frac{n}{n} me \frac{m}{n}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{n+m}{n}}{\frac{nn}{n}-\frac{m^{2}}{n}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia n ki te \frac{n}{n}.
\frac{\frac{n+m}{n}}{\frac{nn-m^{2}}{n}}
Tā te mea he rite te tauraro o \frac{nn}{n} me \frac{m^{2}}{n}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{n+m}{n}}{\frac{n^{2}-m^{2}}{n}}
Mahia ngā whakarea i roto o nn-m^{2}.
\frac{\left(n+m\right)n}{n\left(n^{2}-m^{2}\right)}
Whakawehe \frac{n+m}{n} ki te \frac{n^{2}-m^{2}}{n} mā te whakarea \frac{n+m}{n} ki te tau huripoki o \frac{n^{2}-m^{2}}{n}.
\frac{m+n}{-m^{2}+n^{2}}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{m+n}{\left(m+n\right)\left(-m+n\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{1}{-m+n}
Me whakakore tahi te m+n i te taurunga me te tauraro.
\frac{\frac{n}{n}+\frac{m}{n}}{n-\frac{m^{2}}{n}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{n}{n}.
\frac{\frac{n+m}{n}}{n-\frac{m^{2}}{n}}
Tā te mea he rite te tauraro o \frac{n}{n} me \frac{m}{n}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{n+m}{n}}{\frac{nn}{n}-\frac{m^{2}}{n}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia n ki te \frac{n}{n}.
\frac{\frac{n+m}{n}}{\frac{nn-m^{2}}{n}}
Tā te mea he rite te tauraro o \frac{nn}{n} me \frac{m^{2}}{n}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{n+m}{n}}{\frac{n^{2}-m^{2}}{n}}
Mahia ngā whakarea i roto o nn-m^{2}.
\frac{\left(n+m\right)n}{n\left(n^{2}-m^{2}\right)}
Whakawehe \frac{n+m}{n} ki te \frac{n^{2}-m^{2}}{n} mā te whakarea \frac{n+m}{n} ki te tau huripoki o \frac{n^{2}-m^{2}}{n}.
\frac{m+n}{-m^{2}+n^{2}}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{m+n}{\left(m+n\right)\left(-m+n\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{1}{-m+n}
Me whakakore tahi te m+n i te taurunga me te tauraro.