Aromātai
\frac{1}{n-m}
Whakaroha
\frac{1}{n-m}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{n}{n}+\frac{m}{n}}{n-\frac{m^{2}}{n}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{n}{n}.
\frac{\frac{n+m}{n}}{n-\frac{m^{2}}{n}}
Tā te mea he rite te tauraro o \frac{n}{n} me \frac{m}{n}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{n+m}{n}}{\frac{nn}{n}-\frac{m^{2}}{n}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia n ki te \frac{n}{n}.
\frac{\frac{n+m}{n}}{\frac{nn-m^{2}}{n}}
Tā te mea he rite te tauraro o \frac{nn}{n} me \frac{m^{2}}{n}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{n+m}{n}}{\frac{n^{2}-m^{2}}{n}}
Mahia ngā whakarea i roto o nn-m^{2}.
\frac{\left(n+m\right)n}{n\left(n^{2}-m^{2}\right)}
Whakawehe \frac{n+m}{n} ki te \frac{n^{2}-m^{2}}{n} mā te whakarea \frac{n+m}{n} ki te tau huripoki o \frac{n^{2}-m^{2}}{n}.
\frac{m+n}{-m^{2}+n^{2}}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{m+n}{\left(m+n\right)\left(-m+n\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{1}{-m+n}
Me whakakore tahi te m+n i te taurunga me te tauraro.
\frac{\frac{n}{n}+\frac{m}{n}}{n-\frac{m^{2}}{n}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{n}{n}.
\frac{\frac{n+m}{n}}{n-\frac{m^{2}}{n}}
Tā te mea he rite te tauraro o \frac{n}{n} me \frac{m}{n}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{n+m}{n}}{\frac{nn}{n}-\frac{m^{2}}{n}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia n ki te \frac{n}{n}.
\frac{\frac{n+m}{n}}{\frac{nn-m^{2}}{n}}
Tā te mea he rite te tauraro o \frac{nn}{n} me \frac{m^{2}}{n}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{n+m}{n}}{\frac{n^{2}-m^{2}}{n}}
Mahia ngā whakarea i roto o nn-m^{2}.
\frac{\left(n+m\right)n}{n\left(n^{2}-m^{2}\right)}
Whakawehe \frac{n+m}{n} ki te \frac{n^{2}-m^{2}}{n} mā te whakarea \frac{n+m}{n} ki te tau huripoki o \frac{n^{2}-m^{2}}{n}.
\frac{m+n}{-m^{2}+n^{2}}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{m+n}{\left(m+n\right)\left(-m+n\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{1}{-m+n}
Me whakakore tahi te m+n i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}