Aromātai
-\frac{500}{117}\approx -4.273504274
Tauwehe
-\frac{500}{117} = -4\frac{32}{117} = -4.273504273504273
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{4}{4}+\frac{1}{4}}{\frac{\frac{1}{2}}{1+\frac{2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{\frac{4+1}{4}}{\frac{\frac{1}{2}}{1+\frac{2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{1}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{5}{4}}{\frac{\frac{1}{2}}{1+\frac{2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tāpirihia te 4 ki te 1, ka 5.
\frac{\frac{5}{4}}{\frac{\frac{1}{2}}{\frac{3}{3}+\frac{2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{\frac{5}{4}}{\frac{\frac{1}{2}}{\frac{3+2}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{2}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{5}{4}}{\frac{\frac{1}{2}}{\frac{5}{3}}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tāpirihia te 3 ki te 2, ka 5.
\frac{\frac{5}{4}}{\frac{1}{2}\times \frac{3}{5}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Whakawehe \frac{1}{2} ki te \frac{5}{3} mā te whakarea \frac{1}{2} ki te tau huripoki o \frac{5}{3}.
\frac{\frac{5}{4}}{\frac{1\times 3}{2\times 5}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Me whakarea te \frac{1}{2} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{1-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{2\times 5}.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{\frac{4}{4}-\frac{1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{\frac{4-1}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{\frac{3}{4}}{\frac{1}{3}}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tangohia te 1 i te 4, ka 3.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{3}{4}\times 3}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Whakawehe \frac{3}{4} ki te \frac{1}{3} mā te whakarea \frac{3}{4} ki te tau huripoki o \frac{1}{3}.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{3\times 3}{4}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tuhia te \frac{3}{4}\times 3 hei hautanga kotahi.
\frac{\frac{5}{4}}{\frac{3}{10}-\frac{9}{4}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Whakareatia te 3 ki te 3, ka 9.
\frac{\frac{5}{4}}{\frac{6}{20}-\frac{45}{20}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Ko te maha noa iti rawa atu o 10 me 4 ko 20. Me tahuri \frac{3}{10} me \frac{9}{4} ki te hautau me te tautūnga 20.
\frac{\frac{5}{4}}{\frac{6-45}{20}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tā te mea he rite te tauraro o \frac{6}{20} me \frac{45}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{5}{4}}{-\frac{39}{20}}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Tangohia te 45 i te 6, ka -39.
\frac{5}{4}\left(-\frac{20}{39}\right)\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Whakawehe \frac{5}{4} ki te -\frac{39}{20} mā te whakarea \frac{5}{4} ki te tau huripoki o -\frac{39}{20}.
\frac{5\left(-20\right)}{4\times 39}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Me whakarea te \frac{5}{4} ki te -\frac{20}{39} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-100}{156}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Mahia ngā whakarea i roto i te hautanga \frac{5\left(-20\right)}{4\times 39}.
-\frac{25}{39}\left(\frac{10\times 3+1}{3}-\frac{3\times 3+2}{3}\right)
Whakahekea te hautanga \frac{-100}{156} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
-\frac{25}{39}\left(\frac{30+1}{3}-\frac{3\times 3+2}{3}\right)
Whakareatia te 10 ki te 3, ka 30.
-\frac{25}{39}\left(\frac{31}{3}-\frac{3\times 3+2}{3}\right)
Tāpirihia te 30 ki te 1, ka 31.
-\frac{25}{39}\left(\frac{31}{3}-\frac{9+2}{3}\right)
Whakareatia te 3 ki te 3, ka 9.
-\frac{25}{39}\left(\frac{31}{3}-\frac{11}{3}\right)
Tāpirihia te 9 ki te 2, ka 11.
-\frac{25}{39}\times \frac{31-11}{3}
Tā te mea he rite te tauraro o \frac{31}{3} me \frac{11}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{25}{39}\times \frac{20}{3}
Tangohia te 11 i te 31, ka 20.
\frac{-25\times 20}{39\times 3}
Me whakarea te -\frac{25}{39} ki te \frac{20}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-500}{117}
Mahia ngā whakarea i roto i te hautanga \frac{-25\times 20}{39\times 3}.
-\frac{500}{117}
Ka taea te hautanga \frac{-500}{117} te tuhi anō ko -\frac{500}{117} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}