Aromātai
-\frac{9}{2}=-4.5
Tauwehe
-\frac{9}{2} = -4\frac{1}{2} = -4.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{1+\frac{1\times 3}{3\times 5}}{\frac{1}{3}-\frac{3}{5}}
Me whakarea te \frac{1}{3} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1+\frac{1}{5}}{\frac{1}{3}-\frac{3}{5}}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\frac{5}{5}+\frac{1}{5}}{\frac{1}{3}-\frac{3}{5}}
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{\frac{5+1}{5}}{\frac{1}{3}-\frac{3}{5}}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{1}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{6}{5}}{\frac{1}{3}-\frac{3}{5}}
Tāpirihia te 5 ki te 1, ka 6.
\frac{\frac{6}{5}}{\frac{5}{15}-\frac{9}{15}}
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{1}{3} me \frac{3}{5} ki te hautau me te tautūnga 15.
\frac{\frac{6}{5}}{\frac{5-9}{15}}
Tā te mea he rite te tauraro o \frac{5}{15} me \frac{9}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{6}{5}}{-\frac{4}{15}}
Tangohia te 9 i te 5, ka -4.
\frac{6}{5}\left(-\frac{15}{4}\right)
Whakawehe \frac{6}{5} ki te -\frac{4}{15} mā te whakarea \frac{6}{5} ki te tau huripoki o -\frac{4}{15}.
\frac{6\left(-15\right)}{5\times 4}
Me whakarea te \frac{6}{5} ki te -\frac{15}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-90}{20}
Mahia ngā whakarea i roto i te hautanga \frac{6\left(-15\right)}{5\times 4}.
-\frac{9}{2}
Whakahekea te hautanga \frac{-90}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}