Aromātai
-\frac{17}{12}\approx -1.416666667
Tauwehe
-\frac{17}{12} = -1\frac{5}{12} = -1.4166666666666667
Tohaina
Kua tāruatia ki te papatopenga
\frac{1+\frac{1}{\frac{2}{2}+\frac{1}{2}}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{1+\frac{1}{\frac{2+1}{2}}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1+\frac{1}{\frac{3}{2}}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Tāpirihia te 2 ki te 1, ka 3.
\frac{1+1\times \frac{2}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Whakawehe 1 ki te \frac{3}{2} mā te whakarea 1 ki te tau huripoki o \frac{3}{2}.
\frac{1+\frac{2}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Whakareatia te 1 ki te \frac{2}{3}, ka \frac{2}{3}.
\frac{\frac{3}{3}+\frac{2}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{\frac{3+2}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{2}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{5}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Tāpirihia te 3 ki te 2, ka 5.
\frac{\frac{5}{3}}{1-\frac{1}{\frac{2}{2}-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{\frac{5}{3}}{1-\frac{1}{\frac{2-1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{1}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{5}{3}}{1-\frac{1}{\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Tangohia te 1 i te 2, ka 1.
\frac{\frac{5}{3}}{1-1\times 2}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Whakawehe 1 ki te \frac{1}{2} mā te whakarea 1 ki te tau huripoki o \frac{1}{2}.
\frac{\frac{5}{3}}{1-2}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Whakareatia te 1 ki te 2, ka 2.
\frac{\frac{5}{3}}{-1}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Tangohia te 2 i te 1, ka -1.
\frac{5}{3\left(-1\right)}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Tuhia te \frac{\frac{5}{3}}{-1} hei hautanga kotahi.
\frac{5}{-3}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Whakareatia te 3 ki te -1, ka -3.
-\frac{5}{3}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Ka taea te hautanga \frac{5}{-3} te tuhi anō ko -\frac{5}{3} mā te tango i te tohu tōraro.
-\frac{5}{3}-\frac{\frac{2\times 3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Tuhia te 2\times \frac{3}{4} hei hautanga kotahi.
-\frac{5}{3}-\frac{\frac{6}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Whakareatia te 2 ki te 3, ka 6.
-\frac{5}{3}-\frac{\frac{3}{2}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{5}{3}-\frac{\frac{3}{2}-\frac{8+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Whakareatia te 2 ki te 4, ka 8.
-\frac{5}{3}-\frac{\frac{3}{2}-\frac{11}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Tāpirihia te 8 ki te 3, ka 11.
-\frac{5}{3}-\frac{\frac{6}{4}-\frac{11}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{3}{2} me \frac{11}{4} ki te hautau me te tautūnga 4.
-\frac{5}{3}-\frac{\frac{6-11}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Tā te mea he rite te tauraro o \frac{6}{4} me \frac{11}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Tangohia te 11 i te 6, ka -5.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+\frac{1}{\frac{4}{4}-\frac{3}{4}}}
Me tahuri te 1 ki te hautau \frac{4}{4}.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+\frac{1}{\frac{4-3}{4}}}
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{3}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+\frac{1}{\frac{1}{4}}}
Tangohia te 3 i te 4, ka 1.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+1\times 4}
Whakawehe 1 ki te \frac{1}{4} mā te whakarea 1 ki te tau huripoki o \frac{1}{4}.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+4}
Whakareatia te 1 ki te 4, ka 4.
-\frac{5}{3}-\frac{-\frac{5}{4}}{5}
Tāpirihia te 1 ki te 4, ka 5.
-\frac{5}{3}-\frac{-5}{4\times 5}
Tuhia te \frac{-\frac{5}{4}}{5} hei hautanga kotahi.
-\frac{5}{3}-\frac{-5}{20}
Whakareatia te 4 ki te 5, ka 20.
-\frac{5}{3}-\left(-\frac{1}{4}\right)
Whakahekea te hautanga \frac{-5}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
-\frac{5}{3}+\frac{1}{4}
Ko te tauaro o -\frac{1}{4} ko \frac{1}{4}.
-\frac{20}{12}+\frac{3}{12}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri -\frac{5}{3} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{-20+3}{12}
Tā te mea he rite te tauraro o -\frac{20}{12} me \frac{3}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{17}{12}
Tāpirihia te -20 ki te 3, ka -17.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}