Aromātai
-\frac{1}{2}=-0.5
Tauwehe
-\frac{1}{2} = -0.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{0\times \frac{3}{40}+\frac{3}{5}}{\frac{0\times 2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Whakareatia te 0 ki te 32, ka 0.
\frac{0+\frac{3}{5}}{\frac{0\times 2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Whakareatia te 0 ki te \frac{3}{40}, ka 0.
\frac{\frac{3}{5}}{\frac{0\times 2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Tāpirihia te 0 ki te \frac{3}{5}, ka \frac{3}{5}.
\frac{\frac{3}{5}}{\frac{0}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Whakareatia te 0 ki te 2, ka 0.
\frac{\frac{3}{5}}{\frac{0}{\frac{4+1}{2}}-\frac{1\times 5+1}{5}}
Whakareatia te 2 ki te 2, ka 4.
\frac{\frac{3}{5}}{\frac{0}{\frac{5}{2}}-\frac{1\times 5+1}{5}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{\frac{3}{5}}{0-\frac{1\times 5+1}{5}}
Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
\frac{\frac{3}{5}}{0-\frac{5+1}{5}}
Whakareatia te 1 ki te 5, ka 5.
\frac{\frac{3}{5}}{0-\frac{6}{5}}
Tāpirihia te 5 ki te 1, ka 6.
\frac{\frac{3}{5}}{-\frac{6}{5}}
Tangohia te \frac{6}{5} i te 0, ka -\frac{6}{5}.
\frac{3}{5}\left(-\frac{5}{6}\right)
Whakawehe \frac{3}{5} ki te -\frac{6}{5} mā te whakarea \frac{3}{5} ki te tau huripoki o -\frac{6}{5}.
\frac{3\left(-5\right)}{5\times 6}
Me whakarea te \frac{3}{5} ki te -\frac{5}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-15}{30}
Mahia ngā whakarea i roto i te hautanga \frac{3\left(-5\right)}{5\times 6}.
-\frac{1}{2}
Whakahekea te hautanga \frac{-15}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}