Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
\frac{0\times 60^{2}}{200\times 0\times 2\times 0\times 711+22+6-5}
Whakareatia te 0 ki te 17, ka 0.
\frac{0\times 3600}{200\times 0\times 2\times 0\times 711+22+6-5}
Tātaihia te 60 mā te pū o 2, kia riro ko 3600.
\frac{0}{200\times 0\times 2\times 0\times 711+22+6-5}
Whakareatia te 0 ki te 3600, ka 0.
\frac{0}{0\times 2\times 0\times 711+22+6-5}
Whakareatia te 200 ki te 0, ka 0.
\frac{0}{0\times 0\times 711+22+6-5}
Whakareatia te 0 ki te 2, ka 0.
\frac{0}{0\times 711+22+6-5}
Whakareatia te 0 ki te 0, ka 0.
\frac{0}{0+22+6-5}
Whakareatia te 0 ki te 711, ka 0.
\frac{0}{22+6-5}
Tāpirihia te 0 ki te 22, ka 22.
\frac{0}{28-5}
Tāpirihia te 22 ki te 6, ka 28.
\frac{0}{23}
Tangohia te 5 i te 28, ka 23.
0
Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}