Whakaoti mō y
y=1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.4y}{0.5}+\frac{0.9}{0.5}-\frac{0.3+0.2y}{0.3}=1
Whakawehea ia wā o 0.4y+0.9 ki te 0.5, kia riro ko \frac{0.4y}{0.5}+\frac{0.9}{0.5}.
0.8y+\frac{0.9}{0.5}-\frac{0.3+0.2y}{0.3}=1
Whakawehea te 0.4y ki te 0.5, kia riro ko 0.8y.
0.8y+\frac{9}{5}-\frac{0.3+0.2y}{0.3}=1
Whakarohaina te \frac{0.9}{0.5} mā te whakarea i te taurunga me te tauraro ki te 10.
0.8y+\frac{9}{5}-\left(\frac{0.3}{0.3}+\frac{0.2y}{0.3}\right)=1
Whakawehea ia wā o 0.3+0.2y ki te 0.3, kia riro ko \frac{0.3}{0.3}+\frac{0.2y}{0.3}.
0.8y+\frac{9}{5}-\left(1+\frac{0.2y}{0.3}\right)=1
Whakawehea te 0.3 ki te 0.3, kia riro ko 1.
0.8y+\frac{9}{5}-\left(1+\frac{2}{3}y\right)=1
Whakawehea te 0.2y ki te 0.3, kia riro ko \frac{2}{3}y.
0.8y+\frac{9}{5}-1-\frac{2}{3}y=1
Hei kimi i te tauaro o 1+\frac{2}{3}y, kimihia te tauaro o ia taurangi.
0.8y+\frac{9}{5}-\frac{5}{5}-\frac{2}{3}y=1
Me tahuri te 1 ki te hautau \frac{5}{5}.
0.8y+\frac{9-5}{5}-\frac{2}{3}y=1
Tā te mea he rite te tauraro o \frac{9}{5} me \frac{5}{5}, me tango rāua mā te tango i ō raua taurunga.
0.8y+\frac{4}{5}-\frac{2}{3}y=1
Tangohia te 5 i te 9, ka 4.
\frac{2}{15}y+\frac{4}{5}=1
Pahekotia te 0.8y me -\frac{2}{3}y, ka \frac{2}{15}y.
\frac{2}{15}y=1-\frac{4}{5}
Tangohia te \frac{4}{5} mai i ngā taha e rua.
\frac{2}{15}y=\frac{5}{5}-\frac{4}{5}
Me tahuri te 1 ki te hautau \frac{5}{5}.
\frac{2}{15}y=\frac{5-4}{5}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{4}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{15}y=\frac{1}{5}
Tangohia te 4 i te 5, ka 1.
y=\frac{\frac{1}{5}}{\frac{2}{15}}
Whakawehea ngā taha e rua ki te \frac{2}{15}.
y=\frac{1}{5\times \frac{2}{15}}
Tuhia te \frac{\frac{1}{5}}{\frac{2}{15}} hei hautanga kotahi.
y=\frac{1}{\frac{2}{3}}
Whakareatia te 5 ki te \frac{2}{15}, ka \frac{2}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}