Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.125 \cdot 9.8}{0.48480962024633717} = \frac{0.125 \cdot 98}{0.5735764363510464}
Evaluate trigonometric functions in the problem
\frac{1.225}{0.48480962024633717}=\frac{0.125\times 98}{0.5735764363510464}
Whakareatia te 0.125 ki te 9.8, ka 1.225.
\frac{122500000000000000}{48480962024633717}=\frac{0.125\times 98}{0.5735764363510464}
Whakarohaina te \frac{1.225}{0.48480962024633717} mā te whakarea i te taurunga me te tauraro ki te 100000000000000000.
\frac{122500000000000000}{48480962024633717}=\frac{12.25}{0.5735764363510464}
Whakareatia te 0.125 ki te 98, ka 12.25.
\frac{122500000000000000}{48480962024633717}=\frac{122500000000000000}{5735764363510464}
Whakarohaina te \frac{12.25}{0.5735764363510464} mā te whakarea i te taurunga me te tauraro ki te 10000000000000000.
\frac{122500000000000000}{48480962024633717}=\frac{1914062500000000}{89621318179851}
Whakahekea te hautanga \frac{122500000000000000}{5735764363510464} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 64.
\frac{10978611477031747500000000000000}{4344927723274971685871404636167}=\frac{92795591375275473945312500000000}{4344927723274971685871404636167}
Ko te maha noa iti rawa atu o 48480962024633717 me 89621318179851 ko 4344927723274971685871404636167. Me tahuri \frac{122500000000000000}{48480962024633717} me \frac{1914062500000000}{89621318179851} ki te hautau me te tautūnga 4344927723274971685871404636167.
\text{false}
Whakatauritea te \frac{10978611477031747500000000000000}{4344927723274971685871404636167} me te \frac{92795591375275473945312500000000}{4344927723274971685871404636167}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}