Whakaoti mō x
x=-13
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\times \frac{0.1x+0.1}{0.3}-4=2x-\left(x-1\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
2\times \frac{0.1x+0.1}{0.3}-4=2x-x-\left(-1\right)
Hei kimi i te tauaro o x-1, kimihia te tauaro o ia taurangi.
2\times \frac{0.1x+0.1}{0.3}-4=2x-x+1
Ko te tauaro o -1 ko 1.
2\times \frac{0.1x+0.1}{0.3}-4=x+1
Pahekotia te 2x me -x, ka x.
2\left(\frac{0.1x}{0.3}+\frac{0.1}{0.3}\right)-4=x+1
Whakawehea ia wā o 0.1x+0.1 ki te 0.3, kia riro ko \frac{0.1x}{0.3}+\frac{0.1}{0.3}.
2\left(\frac{1}{3}x+\frac{0.1}{0.3}\right)-4=x+1
Whakawehea te 0.1x ki te 0.3, kia riro ko \frac{1}{3}x.
2\left(\frac{1}{3}x+\frac{1}{3}\right)-4=x+1
Whakarohaina te \frac{0.1}{0.3} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{2}{3}x+2\times \frac{1}{3}-4=x+1
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te \frac{1}{3}x+\frac{1}{3}.
\frac{2}{3}x+\frac{2}{3}-4=x+1
Whakareatia te 2 ki te \frac{1}{3}, ka \frac{2}{3}.
\frac{2}{3}x+\frac{2}{3}-\frac{12}{3}=x+1
Me tahuri te 4 ki te hautau \frac{12}{3}.
\frac{2}{3}x+\frac{2-12}{3}=x+1
Tā te mea he rite te tauraro o \frac{2}{3} me \frac{12}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{3}x-\frac{10}{3}=x+1
Tangohia te 12 i te 2, ka -10.
\frac{2}{3}x-\frac{10}{3}-x=1
Tangohia te x mai i ngā taha e rua.
-\frac{1}{3}x-\frac{10}{3}=1
Pahekotia te \frac{2}{3}x me -x, ka -\frac{1}{3}x.
-\frac{1}{3}x=1+\frac{10}{3}
Me tāpiri te \frac{10}{3} ki ngā taha e rua.
-\frac{1}{3}x=\frac{3}{3}+\frac{10}{3}
Me tahuri te 1 ki te hautau \frac{3}{3}.
-\frac{1}{3}x=\frac{3+10}{3}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{10}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{1}{3}x=\frac{13}{3}
Tāpirihia te 3 ki te 10, ka 13.
x=\frac{\frac{13}{3}}{-\frac{1}{3}}
Whakawehea ngā taha e rua ki te -\frac{1}{3}.
x=\frac{13}{3\left(-\frac{1}{3}\right)}
Tuhia te \frac{\frac{13}{3}}{-\frac{1}{3}} hei hautanga kotahi.
x=\frac{13}{-1}
Whakareatia te 3 ki te -\frac{1}{3}, ka -1.
x=-13
Ka taea te hautanga \frac{13}{-1} te tuhi anō ko -13 mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}