Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.05}{0.03}+\frac{0.02x}{0.03}-\frac{1-0.3x}{0.2}=1
Whakawehea ia wā o 0.05+0.02x ki te 0.03, kia riro ko \frac{0.05}{0.03}+\frac{0.02x}{0.03}.
\frac{5}{3}+\frac{0.02x}{0.03}-\frac{1-0.3x}{0.2}=1
Whakarohaina te \frac{0.05}{0.03} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{5}{3}+\frac{2}{3}x-\frac{1-0.3x}{0.2}=1
Whakawehea te 0.02x ki te 0.03, kia riro ko \frac{2}{3}x.
\frac{5}{3}+\frac{2}{3}x-\left(\frac{1}{0.2}+\frac{-0.3x}{0.2}\right)=1
Whakawehea ia wā o 1-0.3x ki te 0.2, kia riro ko \frac{1}{0.2}+\frac{-0.3x}{0.2}.
\frac{5}{3}+\frac{2}{3}x-\left(\frac{10}{2}+\frac{-0.3x}{0.2}\right)=1
Whakarohaina te \frac{1}{0.2} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{5}{3}+\frac{2}{3}x-\left(5+\frac{-0.3x}{0.2}\right)=1
Whakawehea te 10 ki te 2, kia riro ko 5.
\frac{5}{3}+\frac{2}{3}x-\left(5-1.5x\right)=1
Whakawehea te -0.3x ki te 0.2, kia riro ko -1.5x.
\frac{5}{3}+\frac{2}{3}x-5-\left(-1.5x\right)=1
Hei kimi i te tauaro o 5-1.5x, kimihia te tauaro o ia taurangi.
\frac{5}{3}+\frac{2}{3}x-5+1.5x=1
Ko te tauaro o -1.5x ko 1.5x.
\frac{5}{3}+\frac{2}{3}x-\frac{15}{3}+1.5x=1
Me tahuri te 5 ki te hautau \frac{15}{3}.
\frac{5-15}{3}+\frac{2}{3}x+1.5x=1
Tā te mea he rite te tauraro o \frac{5}{3} me \frac{15}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{10}{3}+\frac{2}{3}x+1.5x=1
Tangohia te 15 i te 5, ka -10.
-\frac{10}{3}+\frac{13}{6}x=1
Pahekotia te \frac{2}{3}x me 1.5x, ka \frac{13}{6}x.
\frac{13}{6}x=1+\frac{10}{3}
Me tāpiri te \frac{10}{3} ki ngā taha e rua.
\frac{13}{6}x=\frac{3}{3}+\frac{10}{3}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{13}{6}x=\frac{3+10}{3}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{10}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{6}x=\frac{13}{3}
Tāpirihia te 3 ki te 10, ka 13.
x=\frac{\frac{13}{3}}{\frac{13}{6}}
Whakawehea ngā taha e rua ki te \frac{13}{6}.
x=\frac{13}{3\times \frac{13}{6}}
Tuhia te \frac{\frac{13}{3}}{\frac{13}{6}} hei hautanga kotahi.
x=\frac{13}{6.5}
Whakareatia te 3 ki te \frac{13}{6}, ka 6.5.
x=\frac{130}{65}
Whakarohaina te \frac{13}{6.5} mā te whakarea i te taurunga me te tauraro ki te 10.
x=2
Whakawehea te 130 ki te 65, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}