Whakaoti mō x
x = \frac{109}{21} = 5\frac{4}{21} \approx 5.19047619
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\times \frac{0.04x+0.09}{0.05}-2\times \frac{0.3x+0.2}{0.3}=x-5
Whakareatia ngā taha e rua o te whārite ki te 2.
2\left(\frac{0.04x}{0.05}+\frac{0.09}{0.05}\right)-2\times \frac{0.3x+0.2}{0.3}=x-5
Whakawehea ia wā o 0.04x+0.09 ki te 0.05, kia riro ko \frac{0.04x}{0.05}+\frac{0.09}{0.05}.
2\left(0.8x+\frac{0.09}{0.05}\right)-2\times \frac{0.3x+0.2}{0.3}=x-5
Whakawehea te 0.04x ki te 0.05, kia riro ko 0.8x.
2\left(0.8x+\frac{9}{5}\right)-2\times \frac{0.3x+0.2}{0.3}=x-5
Whakarohaina te \frac{0.09}{0.05} mā te whakarea i te taurunga me te tauraro ki te 100.
1.6x+2\times \frac{9}{5}-2\times \frac{0.3x+0.2}{0.3}=x-5
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 0.8x+\frac{9}{5}.
1.6x+\frac{2\times 9}{5}-2\times \frac{0.3x+0.2}{0.3}=x-5
Tuhia te 2\times \frac{9}{5} hei hautanga kotahi.
1.6x+\frac{18}{5}-2\times \frac{0.3x+0.2}{0.3}=x-5
Whakareatia te 2 ki te 9, ka 18.
1.6x+\frac{18}{5}-2\left(\frac{0.3x}{0.3}+\frac{0.2}{0.3}\right)=x-5
Whakawehea ia wā o 0.3x+0.2 ki te 0.3, kia riro ko \frac{0.3x}{0.3}+\frac{0.2}{0.3}.
1.6x+\frac{18}{5}-2\left(x+\frac{0.2}{0.3}\right)=x-5
Me whakakore te 0.3 me te 0.3.
1.6x+\frac{18}{5}-2\left(x+\frac{2}{3}\right)=x-5
Whakarohaina te \frac{0.2}{0.3} mā te whakarea i te taurunga me te tauraro ki te 10.
1.6x+\frac{18}{5}-2x-2\times \frac{2}{3}=x-5
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+\frac{2}{3}.
1.6x+\frac{18}{5}-2x+\frac{-2\times 2}{3}=x-5
Tuhia te -2\times \frac{2}{3} hei hautanga kotahi.
1.6x+\frac{18}{5}-2x+\frac{-4}{3}=x-5
Whakareatia te -2 ki te 2, ka -4.
1.6x+\frac{18}{5}-2x-\frac{4}{3}=x-5
Ka taea te hautanga \frac{-4}{3} te tuhi anō ko -\frac{4}{3} mā te tango i te tohu tōraro.
-0.4x+\frac{18}{5}-\frac{4}{3}=x-5
Pahekotia te 1.6x me -2x, ka -0.4x.
-0.4x+\frac{54}{15}-\frac{20}{15}=x-5
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri \frac{18}{5} me \frac{4}{3} ki te hautau me te tautūnga 15.
-0.4x+\frac{54-20}{15}=x-5
Tā te mea he rite te tauraro o \frac{54}{15} me \frac{20}{15}, me tango rāua mā te tango i ō raua taurunga.
-0.4x+\frac{34}{15}=x-5
Tangohia te 20 i te 54, ka 34.
-0.4x+\frac{34}{15}-x=-5
Tangohia te x mai i ngā taha e rua.
-1.4x+\frac{34}{15}=-5
Pahekotia te -0.4x me -x, ka -1.4x.
-1.4x=-5-\frac{34}{15}
Tangohia te \frac{34}{15} mai i ngā taha e rua.
-1.4x=-\frac{75}{15}-\frac{34}{15}
Me tahuri te -5 ki te hautau -\frac{75}{15}.
-1.4x=\frac{-75-34}{15}
Tā te mea he rite te tauraro o -\frac{75}{15} me \frac{34}{15}, me tango rāua mā te tango i ō raua taurunga.
-1.4x=-\frac{109}{15}
Tangohia te 34 i te -75, ka -109.
x=\frac{-\frac{109}{15}}{-1.4}
Whakawehea ngā taha e rua ki te -1.4.
x=\frac{-109}{15\left(-1.4\right)}
Tuhia te \frac{-\frac{109}{15}}{-1.4} hei hautanga kotahi.
x=\frac{-109}{-21}
Whakareatia te 15 ki te -1.4, ka -21.
x=\frac{109}{21}
Ka taea te hautanga \frac{-109}{-21} te whakamāmā ki te \frac{109}{21} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}