Aromātai
-\frac{39}{70}\approx -0.557142857
Tauwehe
-\frac{39}{70} = -0.5571428571428572
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{8}{25}\times \frac{3}{40}+\frac{3}{5}}{\frac{0.2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Me tahuri ki tau ā-ira 0.32 ki te hautau \frac{32}{100}. Whakahekea te hautanga \frac{32}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{\frac{8\times 3}{25\times 40}+\frac{3}{5}}{\frac{0.2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Me whakarea te \frac{8}{25} ki te \frac{3}{40} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{24}{1000}+\frac{3}{5}}{\frac{0.2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Mahia ngā whakarea i roto i te hautanga \frac{8\times 3}{25\times 40}.
\frac{\frac{3}{125}+\frac{3}{5}}{\frac{0.2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Whakahekea te hautanga \frac{24}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{\frac{3}{125}+\frac{75}{125}}{\frac{0.2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Ko te maha noa iti rawa atu o 125 me 5 ko 125. Me tahuri \frac{3}{125} me \frac{3}{5} ki te hautau me te tautūnga 125.
\frac{\frac{3+75}{125}}{\frac{0.2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Tā te mea he rite te tauraro o \frac{3}{125} me \frac{75}{125}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{78}{125}}{\frac{0.2}{\frac{2\times 2+1}{2}}-\frac{1\times 5+1}{5}}
Tāpirihia te 3 ki te 75, ka 78.
\frac{\frac{78}{125}}{\frac{0.2\times 2}{2\times 2+1}-\frac{1\times 5+1}{5}}
Whakawehe 0.2 ki te \frac{2\times 2+1}{2} mā te whakarea 0.2 ki te tau huripoki o \frac{2\times 2+1}{2}.
\frac{\frac{78}{125}}{\frac{0.4}{2\times 2+1}-\frac{1\times 5+1}{5}}
Whakareatia te 0.2 ki te 2, ka 0.4.
\frac{\frac{78}{125}}{\frac{0.4}{4+1}-\frac{1\times 5+1}{5}}
Whakareatia te 2 ki te 2, ka 4.
\frac{\frac{78}{125}}{\frac{0.4}{5}-\frac{1\times 5+1}{5}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{\frac{78}{125}}{\frac{4}{50}-\frac{1\times 5+1}{5}}
Whakarohaina te \frac{0.4}{5} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{\frac{78}{125}}{\frac{2}{25}-\frac{1\times 5+1}{5}}
Whakahekea te hautanga \frac{4}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{78}{125}}{\frac{2}{25}-\frac{5+1}{5}}
Whakareatia te 1 ki te 5, ka 5.
\frac{\frac{78}{125}}{\frac{2}{25}-\frac{6}{5}}
Tāpirihia te 5 ki te 1, ka 6.
\frac{\frac{78}{125}}{\frac{2}{25}-\frac{30}{25}}
Ko te maha noa iti rawa atu o 25 me 5 ko 25. Me tahuri \frac{2}{25} me \frac{6}{5} ki te hautau me te tautūnga 25.
\frac{\frac{78}{125}}{\frac{2-30}{25}}
Tā te mea he rite te tauraro o \frac{2}{25} me \frac{30}{25}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{78}{125}}{-\frac{28}{25}}
Tangohia te 30 i te 2, ka -28.
\frac{78}{125}\left(-\frac{25}{28}\right)
Whakawehe \frac{78}{125} ki te -\frac{28}{25} mā te whakarea \frac{78}{125} ki te tau huripoki o -\frac{28}{25}.
\frac{78\left(-25\right)}{125\times 28}
Me whakarea te \frac{78}{125} ki te -\frac{25}{28} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-1950}{3500}
Mahia ngā whakarea i roto i te hautanga \frac{78\left(-25\right)}{125\times 28}.
-\frac{39}{70}
Whakahekea te hautanga \frac{-1950}{3500} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 50.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}