Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{-211}{0.34}=\frac{1\times 10\times 2\times 0.06}{1.6\times 10^{-3}\times 60\times 0.0955}
Tangohia te 211 i te 0, ka -211.
\frac{-21100}{34}=\frac{1\times 10\times 2\times 0.06}{1.6\times 10^{-3}\times 60\times 0.0955}
Whakarohaina te \frac{-211}{0.34} mā te whakarea i te taurunga me te tauraro ki te 100.
-\frac{10550}{17}=\frac{1\times 10\times 2\times 0.06}{1.6\times 10^{-3}\times 60\times 0.0955}
Whakahekea te hautanga \frac{-21100}{34} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{10550}{17}=\frac{0.06}{0.0955\times 1.6\times 3\times 10^{-3}}
Me whakakore tahi te 2\times 10 i te taurunga me te tauraro.
-\frac{10550}{17}=\frac{0.06}{0.1528\times 3\times 10^{-3}}
Whakareatia te 0.0955 ki te 1.6, ka 0.1528.
-\frac{10550}{17}=\frac{0.06}{0.4584\times 10^{-3}}
Whakareatia te 0.1528 ki te 3, ka 0.4584.
-\frac{10550}{17}=\frac{0.06}{0.4584\times \frac{1}{1000}}
Tātaihia te 10 mā te pū o -3, kia riro ko \frac{1}{1000}.
-\frac{10550}{17}=\frac{0.06}{\frac{573}{1250000}}
Whakareatia te 0.4584 ki te \frac{1}{1000}, ka \frac{573}{1250000}.
-\frac{10550}{17}=0.06\times \frac{1250000}{573}
Whakawehe 0.06 ki te \frac{573}{1250000} mā te whakarea 0.06 ki te tau huripoki o \frac{573}{1250000}.
-\frac{10550}{17}=\frac{25000}{191}
Whakareatia te 0.06 ki te \frac{1250000}{573}, ka \frac{25000}{191}.
-\frac{2015050}{3247}=\frac{425000}{3247}
Ko te maha noa iti rawa atu o 17 me 191 ko 3247. Me tahuri -\frac{10550}{17} me \frac{25000}{191} ki te hautau me te tautūnga 3247.
\text{false}
Whakatauritea te -\frac{2015050}{3247} me te \frac{425000}{3247}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}