Whakaoti mō x
x = \frac{32}{21} = 1\frac{11}{21} \approx 1.523809524
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 0 ^ { 2 } - 6 x + 8 } { 1 ^ { 2 } - 6 x + 8 } = 8
Tohaina
Kua tāruatia ki te papatopenga
0^{2}-6x+8=24\left(-2x+3\right)
Tē taea kia ōrite te tāupe x ki \frac{3}{2} nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 3\left(-2x+3\right).
0-6x+8=24\left(-2x+3\right)
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
8-6x=24\left(-2x+3\right)
Tāpirihia te 0 ki te 8, ka 8.
8-6x=-48x+72
Whakamahia te āhuatanga tohatoha hei whakarea te 24 ki te -2x+3.
8-6x+48x=72
Me tāpiri te 48x ki ngā taha e rua.
8+42x=72
Pahekotia te -6x me 48x, ka 42x.
42x=72-8
Tangohia te 8 mai i ngā taha e rua.
42x=64
Tangohia te 8 i te 72, ka 64.
x=\frac{64}{42}
Whakawehea ngā taha e rua ki te 42.
x=\frac{32}{21}
Whakahekea te hautanga \frac{64}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}