Aromātai
-x^{2}
Kimi Pārōnaki e ai ki x
-2x
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { - x ^ { 4 } ( 2 x y z ^ { 2 } ) ^ { 0 } } { x ^ { 2 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-x^{4}\right)\times 1}{x^{2}}
Tātaihia te 2xyz^{2} mā te pū o 0, kia riro ko 1.
\frac{-x^{4}}{x^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
-x^{2}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(-x^{4}\right)\times 1}{x^{2}})
Tātaihia te 2xyz^{2} mā te pū o 0, kia riro ko 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x^{4}}{x^{2}})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(-x^{4}\right)\times 1}{x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2})
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
2\left(-1\right)x^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-2x^{2-1}
Whakareatia 2 ki te -1.
-2x^{1}
Tango 1 mai i 2.
-2x
Mō tētahi kupu t, t^{1}=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}