Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(-x^{4}\right)\times 1}{x^{2}}
Tātaihia te 2xyz^{2} mā te pū o 0, kia riro ko 1.
\frac{-x^{4}}{x^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
-x^{2}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(-x^{4}\right)\times 1}{x^{2}})
Tātaihia te 2xyz^{2} mā te pū o 0, kia riro ko 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x^{4}}{x^{2}})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(-x^{4}\right)\times 1}{x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2})
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
2\left(-1\right)x^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-2x^{2-1}
Whakareatia 2 ki te -1.
-2x^{1}
Tango 1 mai i 2.
-2x
Mō tētahi kupu t, t^{1}=t.