Whakaoti mō k
k=3
k=5
Tohaina
Kua tāruatia ki te papatopenga
-k+3=\left(-k+4\right)k+\left(-k+4\right)\left(-3\right)
Tē taea kia ōrite te tāupe k ki 4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -k+4.
-k+3=-k^{2}+4k+\left(-k+4\right)\left(-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -k+4 ki te k.
-k+3=-k^{2}+4k+3k-12
Whakamahia te āhuatanga tohatoha hei whakarea te -k+4 ki te -3.
-k+3=-k^{2}+7k-12
Pahekotia te 4k me 3k, ka 7k.
-k+3+k^{2}=7k-12
Me tāpiri te k^{2} ki ngā taha e rua.
-k+3+k^{2}-7k=-12
Tangohia te 7k mai i ngā taha e rua.
-k+3+k^{2}-7k+12=0
Me tāpiri te 12 ki ngā taha e rua.
-k+15+k^{2}-7k=0
Tāpirihia te 3 ki te 12, ka 15.
-8k+15+k^{2}=0
Pahekotia te -k me -7k, ka -8k.
k^{2}-8k+15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -8 mō b, me 15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
Pūrua -8.
k=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
Whakareatia -4 ki te 15.
k=\frac{-\left(-8\right)±\sqrt{4}}{2}
Tāpiri 64 ki te -60.
k=\frac{-\left(-8\right)±2}{2}
Tuhia te pūtakerua o te 4.
k=\frac{8±2}{2}
Ko te tauaro o -8 ko 8.
k=\frac{10}{2}
Nā, me whakaoti te whārite k=\frac{8±2}{2} ina he tāpiri te ±. Tāpiri 8 ki te 2.
k=5
Whakawehe 10 ki te 2.
k=\frac{6}{2}
Nā, me whakaoti te whārite k=\frac{8±2}{2} ina he tango te ±. Tango 2 mai i 8.
k=3
Whakawehe 6 ki te 2.
k=5 k=3
Kua oti te whārite te whakatau.
-k+3=\left(-k+4\right)k+\left(-k+4\right)\left(-3\right)
Tē taea kia ōrite te tāupe k ki 4 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -k+4.
-k+3=-k^{2}+4k+\left(-k+4\right)\left(-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -k+4 ki te k.
-k+3=-k^{2}+4k+3k-12
Whakamahia te āhuatanga tohatoha hei whakarea te -k+4 ki te -3.
-k+3=-k^{2}+7k-12
Pahekotia te 4k me 3k, ka 7k.
-k+3+k^{2}=7k-12
Me tāpiri te k^{2} ki ngā taha e rua.
-k+3+k^{2}-7k=-12
Tangohia te 7k mai i ngā taha e rua.
-k+k^{2}-7k=-12-3
Tangohia te 3 mai i ngā taha e rua.
-k+k^{2}-7k=-15
Tangohia te 3 i te -12, ka -15.
-8k+k^{2}=-15
Pahekotia te -k me -7k, ka -8k.
k^{2}-8k=-15
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
k^{2}-8k+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
k^{2}-8k+16=-15+16
Pūrua -4.
k^{2}-8k+16=1
Tāpiri -15 ki te 16.
\left(k-4\right)^{2}=1
Tauwehea k^{2}-8k+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-4\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
k-4=1 k-4=-1
Whakarūnātia.
k=5 k=3
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}