Whakaoti mō f
f=-7
f=-6
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { - f } { 10 f + 42 } = \frac { 1 } { f + 3 }
Tohaina
Kua tāruatia ki te papatopenga
\left(f+3\right)\left(-f\right)=10f+42
Tē taea kia ōrite te tāupe f ki tētahi o ngā uara -\frac{21}{5},-3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(f+3\right)\left(5f+21\right), arā, te tauraro pātahi he tino iti rawa te kitea o 10f+42,f+3.
f\left(-f\right)+3\left(-f\right)=10f+42
Whakamahia te āhuatanga tohatoha hei whakarea te f+3 ki te -f.
f\left(-f\right)+3\left(-f\right)-10f=42
Tangohia te 10f mai i ngā taha e rua.
f\left(-f\right)+3\left(-f\right)-10f-42=0
Tangohia te 42 mai i ngā taha e rua.
f^{2}\left(-1\right)+3\left(-1\right)f-10f-42=0
Whakareatia te f ki te f, ka f^{2}.
f^{2}\left(-1\right)-3f-10f-42=0
Whakareatia te 3 ki te -1, ka -3.
f^{2}\left(-1\right)-13f-42=0
Pahekotia te -3f me -10f, ka -13f.
-f^{2}-13f-42=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
f=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\left(-1\right)\left(-42\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -13 mō b, me -42 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
f=\frac{-\left(-13\right)±\sqrt{169-4\left(-1\right)\left(-42\right)}}{2\left(-1\right)}
Pūrua -13.
f=\frac{-\left(-13\right)±\sqrt{169+4\left(-42\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
f=\frac{-\left(-13\right)±\sqrt{169-168}}{2\left(-1\right)}
Whakareatia 4 ki te -42.
f=\frac{-\left(-13\right)±\sqrt{1}}{2\left(-1\right)}
Tāpiri 169 ki te -168.
f=\frac{-\left(-13\right)±1}{2\left(-1\right)}
Tuhia te pūtakerua o te 1.
f=\frac{13±1}{2\left(-1\right)}
Ko te tauaro o -13 ko 13.
f=\frac{13±1}{-2}
Whakareatia 2 ki te -1.
f=\frac{14}{-2}
Nā, me whakaoti te whārite f=\frac{13±1}{-2} ina he tāpiri te ±. Tāpiri 13 ki te 1.
f=-7
Whakawehe 14 ki te -2.
f=\frac{12}{-2}
Nā, me whakaoti te whārite f=\frac{13±1}{-2} ina he tango te ±. Tango 1 mai i 13.
f=-6
Whakawehe 12 ki te -2.
f=-7 f=-6
Kua oti te whārite te whakatau.
\left(f+3\right)\left(-f\right)=10f+42
Tē taea kia ōrite te tāupe f ki tētahi o ngā uara -\frac{21}{5},-3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(f+3\right)\left(5f+21\right), arā, te tauraro pātahi he tino iti rawa te kitea o 10f+42,f+3.
f\left(-f\right)+3\left(-f\right)=10f+42
Whakamahia te āhuatanga tohatoha hei whakarea te f+3 ki te -f.
f\left(-f\right)+3\left(-f\right)-10f=42
Tangohia te 10f mai i ngā taha e rua.
f^{2}\left(-1\right)+3\left(-1\right)f-10f=42
Whakareatia te f ki te f, ka f^{2}.
f^{2}\left(-1\right)-3f-10f=42
Whakareatia te 3 ki te -1, ka -3.
f^{2}\left(-1\right)-13f=42
Pahekotia te -3f me -10f, ka -13f.
-f^{2}-13f=42
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-f^{2}-13f}{-1}=\frac{42}{-1}
Whakawehea ngā taha e rua ki te -1.
f^{2}+\left(-\frac{13}{-1}\right)f=\frac{42}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
f^{2}+13f=\frac{42}{-1}
Whakawehe -13 ki te -1.
f^{2}+13f=-42
Whakawehe 42 ki te -1.
f^{2}+13f+\left(\frac{13}{2}\right)^{2}=-42+\left(\frac{13}{2}\right)^{2}
Whakawehea te 13, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{13}{2}. Nā, tāpiria te pūrua o te \frac{13}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
f^{2}+13f+\frac{169}{4}=-42+\frac{169}{4}
Pūruatia \frac{13}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
f^{2}+13f+\frac{169}{4}=\frac{1}{4}
Tāpiri -42 ki te \frac{169}{4}.
\left(f+\frac{13}{2}\right)^{2}=\frac{1}{4}
Tauwehea f^{2}+13f+\frac{169}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(f+\frac{13}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
f+\frac{13}{2}=\frac{1}{2} f+\frac{13}{2}=-\frac{1}{2}
Whakarūnātia.
f=-6 f=-7
Me tango \frac{13}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}