Whakaoti mō x
x=-\frac{6}{23}\approx -0.260869565
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(-9x-6\right)-6\left(-x+1\right)=2\left(x-9\right)
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,2,6.
-27x-18-6\left(-x+1\right)=2\left(x-9\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te -9x-6.
-27x-18-6\left(-x\right)-6=2\left(x-9\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te -x+1.
-27x-18+6x-6=2\left(x-9\right)
Whakareatia te -6 ki te -1, ka 6.
-21x-18-6=2\left(x-9\right)
Pahekotia te -27x me 6x, ka -21x.
-21x-24=2\left(x-9\right)
Tangohia te 6 i te -18, ka -24.
-21x-24=2x-18
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-9.
-21x-24-2x=-18
Tangohia te 2x mai i ngā taha e rua.
-23x-24=-18
Pahekotia te -21x me -2x, ka -23x.
-23x=-18+24
Me tāpiri te 24 ki ngā taha e rua.
-23x=6
Tāpirihia te -18 ki te 24, ka 6.
x=\frac{6}{-23}
Whakawehea ngā taha e rua ki te -23.
x=-\frac{6}{23}
Ka taea te hautanga \frac{6}{-23} te tuhi anō ko -\frac{6}{23} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}