Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(-9x-6\right)-6\left(-x+1\right)=2\left(x-9\right)
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,2,6.
-27x-18-6\left(-x+1\right)=2\left(x-9\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te -9x-6.
-27x-18-6\left(-x\right)-6=2\left(x-9\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te -x+1.
-27x-18+6x-6=2\left(x-9\right)
Whakareatia te -6 ki te -1, ka 6.
-21x-18-6=2\left(x-9\right)
Pahekotia te -27x me 6x, ka -21x.
-21x-24=2\left(x-9\right)
Tangohia te 6 i te -18, ka -24.
-21x-24=2x-18
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-9.
-21x-24-2x=-18
Tangohia te 2x mai i ngā taha e rua.
-23x-24=-18
Pahekotia te -21x me -2x, ka -23x.
-23x=-18+24
Me tāpiri te 24 ki ngā taha e rua.
-23x=6
Tāpirihia te -18 ki te 24, ka 6.
x=\frac{6}{-23}
Whakawehea ngā taha e rua ki te -23.
x=-\frac{6}{23}
Ka taea te hautanga \frac{6}{-23} te tuhi anō ko -\frac{6}{23} mā te tango i te tohu tōraro.