Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(-8\right)^{1}a^{3}b^{5}}{4^{1}a^{4}b^{4}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{\left(-8\right)^{1}}{4^{1}}a^{3-4}b^{5-4}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\left(-8\right)^{1}}{4^{1}}\times \frac{1}{a}b^{5-4}
Tango 4 mai i 3.
\frac{\left(-8\right)^{1}}{4^{1}}\times \frac{1}{a}b^{1}
Tango 4 mai i 5.
-2\times \frac{1}{a}b
Whakawehe -8 ki te 4.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{8b^{5}}{4b^{4}}\right)a^{3-4})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-2b\right)\times \frac{1}{a})
Mahia ngā tātaitanga.
-\left(-2b\right)a^{-1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
2ba^{-2}
Mahia ngā tātaitanga.