Aromātai
-\frac{1}{15d}
Kimi Pārōnaki e ai ki d
\frac{1}{15d^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{-7\times 3}{15d}+\frac{4\times 5}{15d}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 5d me 3d ko 15d. Whakareatia \frac{-7}{5d} ki te \frac{3}{3}. Whakareatia \frac{4}{3d} ki te \frac{5}{5}.
\frac{-7\times 3+4\times 5}{15d}
Tā te mea he rite te tauraro o \frac{-7\times 3}{15d} me \frac{4\times 5}{15d}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-21+20}{15d}
Mahia ngā whakarea i roto o -7\times 3+4\times 5.
\frac{-1}{15d}
Mahia ngā tātaitai i roto o -21+20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}