Aromātai
-\frac{283}{825}\approx -0.343030303
Tauwehe
-\frac{283}{825} = -0.343030303030303
Tohaina
Kua tāruatia ki te papatopenga
-\frac{7}{11}+\frac{13}{-15}+\frac{29}{25}
Ka taea te hautanga \frac{-7}{11} te tuhi anō ko -\frac{7}{11} mā te tango i te tohu tōraro.
-\frac{7}{11}-\frac{13}{15}+\frac{29}{25}
Ka taea te hautanga \frac{13}{-15} te tuhi anō ko -\frac{13}{15} mā te tango i te tohu tōraro.
-\frac{105}{165}-\frac{143}{165}+\frac{29}{25}
Ko te maha noa iti rawa atu o 11 me 15 ko 165. Me tahuri -\frac{7}{11} me \frac{13}{15} ki te hautau me te tautūnga 165.
\frac{-105-143}{165}+\frac{29}{25}
Tā te mea he rite te tauraro o -\frac{105}{165} me \frac{143}{165}, me tango rāua mā te tango i ō raua taurunga.
-\frac{248}{165}+\frac{29}{25}
Tangohia te 143 i te -105, ka -248.
-\frac{1240}{825}+\frac{957}{825}
Ko te maha noa iti rawa atu o 165 me 25 ko 825. Me tahuri -\frac{248}{165} me \frac{29}{25} ki te hautau me te tautūnga 825.
\frac{-1240+957}{825}
Tā te mea he rite te tauraro o -\frac{1240}{825} me \frac{957}{825}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{283}{825}
Tāpirihia te -1240 ki te 957, ka -283.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}