Aromātai
\frac{7-2\sqrt{7}}{3}\approx 0.569499126
Tohaina
Kua tāruatia ki te papatopenga
\frac{-7\left(-2\sqrt{7}+7\right)}{\left(-2\sqrt{7}-7\right)\left(-2\sqrt{7}+7\right)}
Whakangāwaritia te tauraro o \frac{-7}{-2\sqrt{7}-7} mā te whakarea i te taurunga me te tauraro ki te -2\sqrt{7}+7.
\frac{-7\left(-2\sqrt{7}+7\right)}{\left(-2\sqrt{7}\right)^{2}-7^{2}}
Whakaarohia te \left(-2\sqrt{7}-7\right)\left(-2\sqrt{7}+7\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-7\left(-2\sqrt{7}+7\right)}{\left(-2\right)^{2}\left(\sqrt{7}\right)^{2}-7^{2}}
Whakarohaina te \left(-2\sqrt{7}\right)^{2}.
\frac{-7\left(-2\sqrt{7}+7\right)}{4\left(\sqrt{7}\right)^{2}-7^{2}}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\frac{-7\left(-2\sqrt{7}+7\right)}{4\times 7-7^{2}}
Ko te pūrua o \sqrt{7} ko 7.
\frac{-7\left(-2\sqrt{7}+7\right)}{28-7^{2}}
Whakareatia te 4 ki te 7, ka 28.
\frac{-7\left(-2\sqrt{7}+7\right)}{28-49}
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
\frac{-7\left(-2\sqrt{7}+7\right)}{-21}
Tangohia te 49 i te 28, ka -21.
\frac{1}{3}\left(-2\sqrt{7}+7\right)
Whakawehea te -7\left(-2\sqrt{7}+7\right) ki te -21, kia riro ko \frac{1}{3}\left(-2\sqrt{7}+7\right).
\frac{1}{3}\left(-2\right)\sqrt{7}+\frac{1}{3}\times 7
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te -2\sqrt{7}+7.
\frac{-2}{3}\sqrt{7}+\frac{1}{3}\times 7
Whakareatia te \frac{1}{3} ki te -2, ka \frac{-2}{3}.
-\frac{2}{3}\sqrt{7}+\frac{1}{3}\times 7
Ka taea te hautanga \frac{-2}{3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
-\frac{2}{3}\sqrt{7}+\frac{7}{3}
Whakareatia te \frac{1}{3} ki te 7, ka \frac{7}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}