Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{-7\left(-2\sqrt{7}+7\right)}{\left(-2\sqrt{7}-7\right)\left(-2\sqrt{7}+7\right)}
Whakangāwaritia te tauraro o \frac{-7}{-2\sqrt{7}-7} mā te whakarea i te taurunga me te tauraro ki te -2\sqrt{7}+7.
\frac{-7\left(-2\sqrt{7}+7\right)}{\left(-2\sqrt{7}\right)^{2}-7^{2}}
Whakaarohia te \left(-2\sqrt{7}-7\right)\left(-2\sqrt{7}+7\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-7\left(-2\sqrt{7}+7\right)}{\left(-2\right)^{2}\left(\sqrt{7}\right)^{2}-7^{2}}
Whakarohaina te \left(-2\sqrt{7}\right)^{2}.
\frac{-7\left(-2\sqrt{7}+7\right)}{4\left(\sqrt{7}\right)^{2}-7^{2}}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\frac{-7\left(-2\sqrt{7}+7\right)}{4\times 7-7^{2}}
Ko te pūrua o \sqrt{7} ko 7.
\frac{-7\left(-2\sqrt{7}+7\right)}{28-7^{2}}
Whakareatia te 4 ki te 7, ka 28.
\frac{-7\left(-2\sqrt{7}+7\right)}{28-49}
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
\frac{-7\left(-2\sqrt{7}+7\right)}{-21}
Tangohia te 49 i te 28, ka -21.
\frac{1}{3}\left(-2\sqrt{7}+7\right)
Whakawehea te -7\left(-2\sqrt{7}+7\right) ki te -21, kia riro ko \frac{1}{3}\left(-2\sqrt{7}+7\right).
\frac{1}{3}\left(-2\right)\sqrt{7}+\frac{1}{3}\times 7
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3} ki te -2\sqrt{7}+7.
\frac{-2}{3}\sqrt{7}+\frac{1}{3}\times 7
Whakareatia te \frac{1}{3} ki te -2, ka \frac{-2}{3}.
-\frac{2}{3}\sqrt{7}+\frac{1}{3}\times 7
Ka taea te hautanga \frac{-2}{3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
-\frac{2}{3}\sqrt{7}+\frac{7}{3}
Whakareatia te \frac{1}{3} ki te 7, ka \frac{7}{3}.