Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki d
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2d^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}d}(-6d^{2})-\left(-6d^{2}\frac{\mathrm{d}}{\mathrm{d}d}(2d^{1}-5)\right)}{\left(2d^{1}-5\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(2d^{1}-5\right)\times 2\left(-6\right)d^{2-1}-\left(-6d^{2}\times 2d^{1-1}\right)}{\left(2d^{1}-5\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(2d^{1}-5\right)\left(-12\right)d^{1}-\left(-6d^{2}\times 2d^{0}\right)}{\left(2d^{1}-5\right)^{2}}
Mahia ngā tātaitanga.
\frac{2d^{1}\left(-12\right)d^{1}-5\left(-12\right)d^{1}-\left(-6d^{2}\times 2d^{0}\right)}{\left(2d^{1}-5\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{2\left(-12\right)d^{1+1}-5\left(-12\right)d^{1}-\left(-6\times 2d^{2}\right)}{\left(2d^{1}-5\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-24d^{2}+60d^{1}-\left(-12d^{2}\right)}{\left(2d^{1}-5\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(-24-\left(-12\right)\right)d^{2}+60d^{1}}{\left(2d^{1}-5\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-12d^{2}+60d^{1}}{\left(2d^{1}-5\right)^{2}}
Tango -12 mai i -24.
\frac{12d\left(-d^{1}+5d^{0}\right)}{\left(2d^{1}-5\right)^{2}}
Tauwehea te 12d.
\frac{12d\left(-d+5d^{0}\right)}{\left(2d-5\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{12d\left(-d+5\times 1\right)}{\left(2d-5\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{12d\left(-d+5\right)}{\left(2d-5\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.