Whakaoti mō x
x = \frac{24}{19} = 1\frac{5}{19} \approx 1.263157895
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { - 5 } { 3 x + 2 } = \frac { 2 } { 4 - 5 x }
Tohaina
Kua tāruatia ki te papatopenga
\left(5x-4\right)\left(-5\right)=\left(-2-3x\right)\times 2
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{2}{3},\frac{4}{5} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(5x-4\right)\left(3x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o 3x+2,4-5x.
-25x+20=\left(-2-3x\right)\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te 5x-4 ki te -5.
-25x+20=-4-6x
Whakamahia te āhuatanga tohatoha hei whakarea te -2-3x ki te 2.
-25x+20+6x=-4
Me tāpiri te 6x ki ngā taha e rua.
-19x+20=-4
Pahekotia te -25x me 6x, ka -19x.
-19x=-4-20
Tangohia te 20 mai i ngā taha e rua.
-19x=-24
Tangohia te 20 i te -4, ka -24.
x=\frac{-24}{-19}
Whakawehea ngā taha e rua ki te -19.
x=\frac{24}{19}
Ka taea te hautanga \frac{-24}{-19} te whakamāmā ki te \frac{24}{19} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}