Aromātai
\frac{1}{2}+\frac{1}{3}i\approx 0.5+0.333333333i
Wāhi Tūturu
\frac{1}{2} = 0.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-5+i\right)\left(-6-6i\right)}{\left(-6+6i\right)\left(-6-6i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, -6-6i.
\frac{\left(-5+i\right)\left(-6-6i\right)}{\left(-6\right)^{2}-6^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-5+i\right)\left(-6-6i\right)}{72}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{-5\left(-6\right)-5\times \left(-6i\right)-6i-6i^{2}}{72}
Me whakarea ngā tau matatini -5+i me -6-6i pēnā i te whakarea huarua.
\frac{-5\left(-6\right)-5\times \left(-6i\right)-6i-6\left(-1\right)}{72}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{30+30i-6i+6}{72}
Mahia ngā whakarea i roto o -5\left(-6\right)-5\times \left(-6i\right)-6i-6\left(-1\right).
\frac{30+6+\left(30-6\right)i}{72}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 30+30i-6i+6.
\frac{36+24i}{72}
Mahia ngā tāpiri i roto o 30+6+\left(30-6\right)i.
\frac{1}{2}+\frac{1}{3}i
Whakawehea te 36+24i ki te 72, kia riro ko \frac{1}{2}+\frac{1}{3}i.
Re(\frac{\left(-5+i\right)\left(-6-6i\right)}{\left(-6+6i\right)\left(-6-6i\right)})
Me whakarea te taurunga me te tauraro o \frac{-5+i}{-6+6i} ki te haumi hiato o te tauraro, -6-6i.
Re(\frac{\left(-5+i\right)\left(-6-6i\right)}{\left(-6\right)^{2}-6^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-5+i\right)\left(-6-6i\right)}{72})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{-5\left(-6\right)-5\times \left(-6i\right)-6i-6i^{2}}{72})
Me whakarea ngā tau matatini -5+i me -6-6i pēnā i te whakarea huarua.
Re(\frac{-5\left(-6\right)-5\times \left(-6i\right)-6i-6\left(-1\right)}{72})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{30+30i-6i+6}{72})
Mahia ngā whakarea i roto o -5\left(-6\right)-5\times \left(-6i\right)-6i-6\left(-1\right).
Re(\frac{30+6+\left(30-6\right)i}{72})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 30+30i-6i+6.
Re(\frac{36+24i}{72})
Mahia ngā tāpiri i roto o 30+6+\left(30-6\right)i.
Re(\frac{1}{2}+\frac{1}{3}i)
Whakawehea te 36+24i ki te 72, kia riro ko \frac{1}{2}+\frac{1}{3}i.
\frac{1}{2}
Ko te wāhi tūturu o \frac{1}{2}+\frac{1}{3}i ko \frac{1}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}