Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki x
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x^{2}+4\right)\frac{\mathrm{d}}{\mathrm{d}x}(-4x^{2})-\left(-4x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+4)\right)}{\left(x^{2}+4\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}+4\right)\times 2\left(-4\right)x^{2-1}-\left(-4x^{2}\times 2x^{2-1}\right)}{\left(x^{2}+4\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}+4\right)\left(-8\right)x^{1}-\left(-4x^{2}\times 2x^{1}\right)}{\left(x^{2}+4\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{2}\left(-8\right)x^{1}+4\left(-8\right)x^{1}-\left(-4x^{2}\times 2x^{1}\right)}{\left(x^{2}+4\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{-8x^{2+1}+4\left(-8\right)x^{1}-\left(-4\times 2x^{2+1}\right)}{\left(x^{2}+4\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-8x^{3}-32x^{1}-\left(-8x^{3}\right)}{\left(x^{2}+4\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(-8-\left(-8\right)\right)x^{3}-32x^{1}}{\left(x^{2}+4\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-32x^{1}}{\left(x^{2}+4\right)^{2}}
Tango -8 mai i -8.
\frac{-32x}{\left(x^{2}+4\right)^{2}}
Mō tētahi kupu t, t^{1}=t.