Aromātai
\frac{16\sqrt{17}}{17}\approx 3.880570001
Tohaina
Kua tāruatia ki te papatopenga
\frac{-12+8-\left(-20\right)}{\sqrt{\left(-4\right)^{2}+1}}
Whakareatia te -4 ki te 3, ka -12.
\frac{-4-\left(-20\right)}{\sqrt{\left(-4\right)^{2}+1}}
Tāpirihia te -12 ki te 8, ka -4.
\frac{-4+20}{\sqrt{\left(-4\right)^{2}+1}}
Ko te tauaro o -20 ko 20.
\frac{16}{\sqrt{\left(-4\right)^{2}+1}}
Tāpirihia te -4 ki te 20, ka 16.
\frac{16}{\sqrt{16+1}}
Tātaihia te -4 mā te pū o 2, kia riro ko 16.
\frac{16}{\sqrt{17}}
Tāpirihia te 16 ki te 1, ka 17.
\frac{16\sqrt{17}}{\left(\sqrt{17}\right)^{2}}
Whakangāwaritia te tauraro o \frac{16}{\sqrt{17}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{17}.
\frac{16\sqrt{17}}{17}
Ko te pūrua o \sqrt{17} ko 17.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}