Aromātai
\frac{5}{6}+\frac{2}{3}i\approx 0.833333333+0.666666667i
Wāhi Tūturu
\frac{5}{6} = 0.8333333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-4+5i\right)i}{6i^{2}}
Me whakarea tahi te taurunga me te tauraro ki te wae pohewa i.
\frac{\left(-4+5i\right)i}{-6}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{-4i+5i^{2}}{-6}
Whakareatia -4+5i ki te i.
\frac{-4i+5\left(-1\right)}{-6}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{-5-4i}{-6}
Mahia ngā whakarea i roto o -4i+5\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
\frac{5}{6}+\frac{2}{3}i
Whakawehea te -5-4i ki te -6, kia riro ko \frac{5}{6}+\frac{2}{3}i.
Re(\frac{\left(-4+5i\right)i}{6i^{2}})
Me whakarea tahi te taurunga me te tauraro o \frac{-4+5i}{6i} ki te wae pohewa i.
Re(\frac{\left(-4+5i\right)i}{-6})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{-4i+5i^{2}}{-6})
Whakareatia -4+5i ki te i.
Re(\frac{-4i+5\left(-1\right)}{-6})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{-5-4i}{-6})
Mahia ngā whakarea i roto o -4i+5\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
Re(\frac{5}{6}+\frac{2}{3}i)
Whakawehea te -5-4i ki te -6, kia riro ko \frac{5}{6}+\frac{2}{3}i.
\frac{5}{6}
Ko te wāhi tūturu o \frac{5}{6}+\frac{2}{3}i ko \frac{5}{6}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}