Aromātai
2-2i
Wāhi Tūturu
2
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-4+20i\right)\left(-6-4i\right)}{\left(-6+4i\right)\left(-6-4i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, -6-4i.
\frac{\left(-4+20i\right)\left(-6-4i\right)}{\left(-6\right)^{2}-4^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-4+20i\right)\left(-6-4i\right)}{52}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{-4\left(-6\right)-4\times \left(-4i\right)+20i\left(-6\right)+20\left(-4\right)i^{2}}{52}
Me whakarea ngā tau matatini -4+20i me -6-4i pēnā i te whakarea huarua.
\frac{-4\left(-6\right)-4\times \left(-4i\right)+20i\left(-6\right)+20\left(-4\right)\left(-1\right)}{52}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{24+16i-120i+80}{52}
Mahia ngā whakarea i roto o -4\left(-6\right)-4\times \left(-4i\right)+20i\left(-6\right)+20\left(-4\right)\left(-1\right).
\frac{24+80+\left(16-120\right)i}{52}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 24+16i-120i+80.
\frac{104-104i}{52}
Mahia ngā tāpiri i roto o 24+80+\left(16-120\right)i.
2-2i
Whakawehea te 104-104i ki te 52, kia riro ko 2-2i.
Re(\frac{\left(-4+20i\right)\left(-6-4i\right)}{\left(-6+4i\right)\left(-6-4i\right)})
Me whakarea te taurunga me te tauraro o \frac{-4+20i}{-6+4i} ki te haumi hiato o te tauraro, -6-4i.
Re(\frac{\left(-4+20i\right)\left(-6-4i\right)}{\left(-6\right)^{2}-4^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-4+20i\right)\left(-6-4i\right)}{52})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{-4\left(-6\right)-4\times \left(-4i\right)+20i\left(-6\right)+20\left(-4\right)i^{2}}{52})
Me whakarea ngā tau matatini -4+20i me -6-4i pēnā i te whakarea huarua.
Re(\frac{-4\left(-6\right)-4\times \left(-4i\right)+20i\left(-6\right)+20\left(-4\right)\left(-1\right)}{52})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{24+16i-120i+80}{52})
Mahia ngā whakarea i roto o -4\left(-6\right)-4\times \left(-4i\right)+20i\left(-6\right)+20\left(-4\right)\left(-1\right).
Re(\frac{24+80+\left(16-120\right)i}{52})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 24+16i-120i+80.
Re(\frac{104-104i}{52})
Mahia ngā tāpiri i roto o 24+80+\left(16-120\right)i.
Re(2-2i)
Whakawehea te 104-104i ki te 52, kia riro ko 2-2i.
2
Ko te wāhi tūturu o 2-2i ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}