Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-72\right)\left(-36\right)x=\left(x-72\right)\left(x-36\right)\times 36+\left(x-36\right)\left(-72\right)x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 36,72 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-72\right)\left(x-36\right), arā, te tauraro pātahi he tino iti rawa te kitea o -36+x,-72+x.
\left(-36x+2592\right)x=\left(x-72\right)\left(x-36\right)\times 36+\left(x-36\right)\left(-72\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x-72 ki te -36.
-36x^{2}+2592x=\left(x-72\right)\left(x-36\right)\times 36+\left(x-36\right)\left(-72\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te -36x+2592 ki te x.
-36x^{2}+2592x=\left(x^{2}-108x+2592\right)\times 36+\left(x-36\right)\left(-72\right)x
Whakamahia te āhuatanga tuaritanga hei whakarea te x-72 ki te x-36 ka whakakotahi i ngā kupu rite.
-36x^{2}+2592x=36x^{2}-3888x+93312+\left(x-36\right)\left(-72\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-108x+2592 ki te 36.
-36x^{2}+2592x=36x^{2}-3888x+93312+\left(-72x+2592\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x-36 ki te -72.
-36x^{2}+2592x=36x^{2}-3888x+93312-72x^{2}+2592x
Whakamahia te āhuatanga tohatoha hei whakarea te -72x+2592 ki te x.
-36x^{2}+2592x=-36x^{2}-3888x+93312+2592x
Pahekotia te 36x^{2} me -72x^{2}, ka -36x^{2}.
-36x^{2}+2592x=-36x^{2}-1296x+93312
Pahekotia te -3888x me 2592x, ka -1296x.
-36x^{2}+2592x+36x^{2}=-1296x+93312
Me tāpiri te 36x^{2} ki ngā taha e rua.
2592x=-1296x+93312
Pahekotia te -36x^{2} me 36x^{2}, ka 0.
2592x+1296x=93312
Me tāpiri te 1296x ki ngā taha e rua.
3888x=93312
Pahekotia te 2592x me 1296x, ka 3888x.
x=\frac{93312}{3888}
Whakawehea ngā taha e rua ki te 3888.
x=24
Whakawehea te 93312 ki te 3888, kia riro ko 24.