Whakaoti mō y
y=-\frac{5}{21}\approx -0.238095238
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(-3y-2\right)=-\left(-12y+1\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,-6.
-9y-6=-\left(-12y+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te -3y-2.
-9y-6=-\left(-12y\right)-1
Hei kimi i te tauaro o -12y+1, kimihia te tauaro o ia taurangi.
-9y-6=12y-1
Ko te tauaro o -12y ko 12y.
-9y-6-12y=-1
Tangohia te 12y mai i ngā taha e rua.
-21y-6=-1
Pahekotia te -9y me -12y, ka -21y.
-21y=-1+6
Me tāpiri te 6 ki ngā taha e rua.
-21y=5
Tāpirihia te -1 ki te 6, ka 5.
y=\frac{5}{-21}
Whakawehea ngā taha e rua ki te -21.
y=-\frac{5}{21}
Ka taea te hautanga \frac{5}{-21} te tuhi anō ko -\frac{5}{21} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}