Aromātai
-\frac{118}{105}\approx -1.123809524
Tauwehe
-\frac{118}{105} = -1\frac{13}{105} = -1.1238095238095238
Tohaina
Kua tāruatia ki te papatopenga
-\frac{3}{5}+\frac{-2}{3}-\frac{-1}{7}
Ka taea te hautanga \frac{-3}{5} te tuhi anō ko -\frac{3}{5} mā te tango i te tohu tōraro.
-\frac{3}{5}-\frac{2}{3}-\frac{-1}{7}
Ka taea te hautanga \frac{-2}{3} te tuhi anō ko -\frac{2}{3} mā te tango i te tohu tōraro.
-\frac{9}{15}-\frac{10}{15}-\frac{-1}{7}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri -\frac{3}{5} me \frac{2}{3} ki te hautau me te tautūnga 15.
\frac{-9-10}{15}-\frac{-1}{7}
Tā te mea he rite te tauraro o -\frac{9}{15} me \frac{10}{15}, me tango rāua mā te tango i ō raua taurunga.
-\frac{19}{15}-\frac{-1}{7}
Tangohia te 10 i te -9, ka -19.
-\frac{19}{15}-\left(-\frac{1}{7}\right)
Ka taea te hautanga \frac{-1}{7} te tuhi anō ko -\frac{1}{7} mā te tango i te tohu tōraro.
-\frac{19}{15}+\frac{1}{7}
Ko te tauaro o -\frac{1}{7} ko \frac{1}{7}.
-\frac{133}{105}+\frac{15}{105}
Ko te maha noa iti rawa atu o 15 me 7 ko 105. Me tahuri -\frac{19}{15} me \frac{1}{7} ki te hautau me te tautūnga 105.
\frac{-133+15}{105}
Tā te mea he rite te tauraro o -\frac{133}{105} me \frac{15}{105}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{118}{105}
Tāpirihia te -133 ki te 15, ka -118.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}