Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(-20\right)^{1}x^{4}y^{3}}{5^{1}x^{1}y^{1}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{\left(-20\right)^{1}}{5^{1}}x^{4-1}y^{3-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\left(-20\right)^{1}}{5^{1}}x^{3}y^{3-1}
Tango 1 mai i 4.
\frac{\left(-20\right)^{1}}{5^{1}}x^{3}y^{2}
Tango 1 mai i 3.
-4x^{3}y^{2}
Whakawehe -20 ki te 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{20y^{3}}{5y}\right)x^{4-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-4y^{2}\right)x^{3})
Mahia ngā tātaitanga.
3\left(-4y^{2}\right)x^{3-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(-12y^{2}\right)x^{2}
Mahia ngā tātaitanga.