Aromātai
\frac{4}{5}-\frac{2}{5}i=0.8-0.4i
Wāhi Tūturu
\frac{4}{5} = 0.8
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-2-6i\right)\left(1+7i\right)}{\left(1-7i\right)\left(1+7i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 1+7i.
\frac{\left(-2-6i\right)\left(1+7i\right)}{1^{2}-7^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2-6i\right)\left(1+7i\right)}{50}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{-2-2\times \left(7i\right)-6i-6\times 7i^{2}}{50}
Me whakarea ngā tau matatini -2-6i me 1+7i pēnā i te whakarea huarua.
\frac{-2-2\times \left(7i\right)-6i-6\times 7\left(-1\right)}{50}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{-2-14i-6i+42}{50}
Mahia ngā whakarea i roto o -2-2\times \left(7i\right)-6i-6\times 7\left(-1\right).
\frac{-2+42+\left(-14-6\right)i}{50}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -2-14i-6i+42.
\frac{40-20i}{50}
Mahia ngā tāpiri i roto o -2+42+\left(-14-6\right)i.
\frac{4}{5}-\frac{2}{5}i
Whakawehea te 40-20i ki te 50, kia riro ko \frac{4}{5}-\frac{2}{5}i.
Re(\frac{\left(-2-6i\right)\left(1+7i\right)}{\left(1-7i\right)\left(1+7i\right)})
Me whakarea te taurunga me te tauraro o \frac{-2-6i}{1-7i} ki te haumi hiato o te tauraro, 1+7i.
Re(\frac{\left(-2-6i\right)\left(1+7i\right)}{1^{2}-7^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2-6i\right)\left(1+7i\right)}{50})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{-2-2\times \left(7i\right)-6i-6\times 7i^{2}}{50})
Me whakarea ngā tau matatini -2-6i me 1+7i pēnā i te whakarea huarua.
Re(\frac{-2-2\times \left(7i\right)-6i-6\times 7\left(-1\right)}{50})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{-2-14i-6i+42}{50})
Mahia ngā whakarea i roto o -2-2\times \left(7i\right)-6i-6\times 7\left(-1\right).
Re(\frac{-2+42+\left(-14-6\right)i}{50})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -2-14i-6i+42.
Re(\frac{40-20i}{50})
Mahia ngā tāpiri i roto o -2+42+\left(-14-6\right)i.
Re(\frac{4}{5}-\frac{2}{5}i)
Whakawehea te 40-20i ki te 50, kia riro ko \frac{4}{5}-\frac{2}{5}i.
\frac{4}{5}
Ko te wāhi tūturu o \frac{4}{5}-\frac{2}{5}i ko \frac{4}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}