Aromātai
-\frac{13}{53}+\frac{19}{53}i\approx -0.245283019+0.358490566i
Wāhi Tūturu
-\frac{13}{53} = -0.24528301886792453
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-2-4i\right)\left(-5-9i\right)}{\left(-5+9i\right)\left(-5-9i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, -5-9i.
\frac{\left(-2-4i\right)\left(-5-9i\right)}{\left(-5\right)^{2}-9^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2-4i\right)\left(-5-9i\right)}{106}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{-2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)i^{2}}{106}
Me whakarea ngā tau matatini -2-4i me -5-9i pēnā i te whakarea huarua.
\frac{-2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)\left(-1\right)}{106}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{10+18i+20i-36}{106}
Mahia ngā whakarea i roto o -2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)\left(-1\right).
\frac{10-36+\left(18+20\right)i}{106}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 10+18i+20i-36.
\frac{-26+38i}{106}
Mahia ngā tāpiri i roto o 10-36+\left(18+20\right)i.
-\frac{13}{53}+\frac{19}{53}i
Whakawehea te -26+38i ki te 106, kia riro ko -\frac{13}{53}+\frac{19}{53}i.
Re(\frac{\left(-2-4i\right)\left(-5-9i\right)}{\left(-5+9i\right)\left(-5-9i\right)})
Me whakarea te taurunga me te tauraro o \frac{-2-4i}{-5+9i} ki te haumi hiato o te tauraro, -5-9i.
Re(\frac{\left(-2-4i\right)\left(-5-9i\right)}{\left(-5\right)^{2}-9^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2-4i\right)\left(-5-9i\right)}{106})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{-2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)i^{2}}{106})
Me whakarea ngā tau matatini -2-4i me -5-9i pēnā i te whakarea huarua.
Re(\frac{-2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)\left(-1\right)}{106})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{10+18i+20i-36}{106})
Mahia ngā whakarea i roto o -2\left(-5\right)-2\times \left(-9i\right)-4i\left(-5\right)-4\left(-9\right)\left(-1\right).
Re(\frac{10-36+\left(18+20\right)i}{106})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 10+18i+20i-36.
Re(\frac{-26+38i}{106})
Mahia ngā tāpiri i roto o 10-36+\left(18+20\right)i.
Re(-\frac{13}{53}+\frac{19}{53}i)
Whakawehea te -26+38i ki te 106, kia riro ko -\frac{13}{53}+\frac{19}{53}i.
-\frac{13}{53}
Ko te wāhi tūturu o -\frac{13}{53}+\frac{19}{53}i ko -\frac{13}{53}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}