Whakaoti mō x
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)\left(-2\right)+\left(x-1\right)\times 3=1
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-1,x+1,x^{2}-1.
-2x-2+\left(x-1\right)\times 3=1
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te -2.
-2x-2+3x-3=1
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 3.
x-2-3=1
Pahekotia te -2x me 3x, ka x.
x-5=1
Tangohia te 3 i te -2, ka -5.
x=1+5
Me tāpiri te 5 ki ngā taha e rua.
x=6
Tāpirihia te 1 ki te 5, ka 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}