Whakaoti mō w
w=-7
Tohaina
Kua tāruatia ki te papatopenga
\left(w+10\right)\left(-2\right)=\left(w+5\right)\times 3
Tē taea kia ōrite te tāupe w ki tētahi o ngā uara -10,-5 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(w+5\right)\left(w+10\right), arā, te tauraro pātahi he tino iti rawa te kitea o w+5,w+10.
-2w-20=\left(w+5\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te w+10 ki te -2.
-2w-20=3w+15
Whakamahia te āhuatanga tohatoha hei whakarea te w+5 ki te 3.
-2w-20-3w=15
Tangohia te 3w mai i ngā taha e rua.
-5w-20=15
Pahekotia te -2w me -3w, ka -5w.
-5w=15+20
Me tāpiri te 20 ki ngā taha e rua.
-5w=35
Tāpirihia te 15 ki te 20, ka 35.
w=\frac{35}{-5}
Whakawehea ngā taha e rua ki te -5.
w=-7
Whakawehea te 35 ki te -5, kia riro ko -7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}