Aromātai
-\frac{7}{4}=-1.75
Tauwehe
-\frac{7}{4} = -1\frac{3}{4} = -1.75
Tohaina
Kua tāruatia ki te papatopenga
-\frac{2}{5}-\left(\frac{\frac{1}{3}+\frac{1}{-4}}{\frac{1}{15}}+\frac{1}{10}\right)
Ka taea te hautanga \frac{-2}{5} te tuhi anō ko -\frac{2}{5} mā te tango i te tohu tōraro.
-\frac{2}{5}-\left(\frac{\frac{1}{3}-\frac{1}{4}}{\frac{1}{15}}+\frac{1}{10}\right)
Ka taea te hautanga \frac{1}{-4} te tuhi anō ko -\frac{1}{4} mā te tango i te tohu tōraro.
-\frac{2}{5}-\left(\frac{\frac{4}{12}-\frac{3}{12}}{\frac{1}{15}}+\frac{1}{10}\right)
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{1}{3} me \frac{1}{4} ki te hautau me te tautūnga 12.
-\frac{2}{5}-\left(\frac{\frac{4-3}{12}}{\frac{1}{15}}+\frac{1}{10}\right)
Tā te mea he rite te tauraro o \frac{4}{12} me \frac{3}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{2}{5}-\left(\frac{\frac{1}{12}}{\frac{1}{15}}+\frac{1}{10}\right)
Tangohia te 3 i te 4, ka 1.
-\frac{2}{5}-\left(\frac{1}{12}\times 15+\frac{1}{10}\right)
Whakawehe \frac{1}{12} ki te \frac{1}{15} mā te whakarea \frac{1}{12} ki te tau huripoki o \frac{1}{15}.
-\frac{2}{5}-\left(\frac{15}{12}+\frac{1}{10}\right)
Whakareatia te \frac{1}{12} ki te 15, ka \frac{15}{12}.
-\frac{2}{5}-\left(\frac{5}{4}+\frac{1}{10}\right)
Whakahekea te hautanga \frac{15}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{2}{5}-\left(\frac{25}{20}+\frac{2}{20}\right)
Ko te maha noa iti rawa atu o 4 me 10 ko 20. Me tahuri \frac{5}{4} me \frac{1}{10} ki te hautau me te tautūnga 20.
-\frac{2}{5}-\frac{25+2}{20}
Tā te mea he rite te tauraro o \frac{25}{20} me \frac{2}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{2}{5}-\frac{27}{20}
Tāpirihia te 25 ki te 2, ka 27.
-\frac{8}{20}-\frac{27}{20}
Ko te maha noa iti rawa atu o 5 me 20 ko 20. Me tahuri -\frac{2}{5} me \frac{27}{20} ki te hautau me te tautūnga 20.
\frac{-8-27}{20}
Tā te mea he rite te tauraro o -\frac{8}{20} me \frac{27}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{-35}{20}
Tangohia te 27 i te -8, ka -35.
-\frac{7}{4}
Whakahekea te hautanga \frac{-35}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}