Aromātai
-\frac{\sqrt{3}}{3}\approx -0.577350269
Tohaina
Kua tāruatia ki te papatopenga
\frac{-2\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}\times \frac{\sqrt{6}}{3}
Whakangāwaritia te tauraro o \frac{-2}{2\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{-2\sqrt{2}}{2\times 2}\times \frac{\sqrt{6}}{3}
Ko te pūrua o \sqrt{2} ko 2.
\frac{-\sqrt{2}}{2}\times \frac{\sqrt{6}}{3}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{-\sqrt{2}\sqrt{6}}{2\times 3}
Me whakarea te \frac{-\sqrt{2}}{2} ki te \frac{\sqrt{6}}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\sqrt{2}\sqrt{2}\sqrt{3}}{2\times 3}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
\frac{-2\sqrt{3}}{2\times 3}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{-2\sqrt{3}}{6}
Whakareatia te 2 ki te 3, ka 6.
-\frac{1}{3}\sqrt{3}
Whakawehea te -2\sqrt{3} ki te 6, kia riro ko -\frac{1}{3}\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}