Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{-2\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}\times \frac{\sqrt{6}}{3}
Whakangāwaritia te tauraro o \frac{-2}{2\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{-2\sqrt{2}}{2\times 2}\times \frac{\sqrt{6}}{3}
Ko te pūrua o \sqrt{2} ko 2.
\frac{-\sqrt{2}}{2}\times \frac{\sqrt{6}}{3}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{-\sqrt{2}\sqrt{6}}{2\times 3}
Me whakarea te \frac{-\sqrt{2}}{2} ki te \frac{\sqrt{6}}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\sqrt{2}\sqrt{2}\sqrt{3}}{2\times 3}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
\frac{-2\sqrt{3}}{2\times 3}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{-2\sqrt{3}}{6}
Whakareatia te 2 ki te 3, ka 6.
-\frac{1}{3}\sqrt{3}
Whakawehea te -2\sqrt{3} ki te 6, kia riro ko -\frac{1}{3}\sqrt{3}.