Aromātai
-\frac{27231}{1945}\approx -14.000514139
Tauwehe
-\frac{27231}{1945} = -14\frac{1}{1945} = -14.000514138817481
Tohaina
Kua tāruatia ki te papatopenga
\frac{-4\left(1-\frac{3}{4}\right)^{2}+\sqrt{\frac{32}{128}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{-4\times \left(\frac{1}{4}\right)^{2}+\sqrt{\frac{32}{128}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Tangohia te \frac{3}{4} i te 1, ka \frac{1}{4}.
\frac{-4\times \frac{1}{16}+\sqrt{\frac{32}{128}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Tātaihia te \frac{1}{4} mā te pū o 2, kia riro ko \frac{1}{16}.
\frac{-\frac{1}{4}+\sqrt{\frac{32}{128}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Whakareatia te -4 ki te \frac{1}{16}, ka -\frac{1}{4}.
\frac{-\frac{1}{4}+\sqrt{\frac{1}{4}}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Whakahekea te hautanga \frac{32}{128} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 32.
\frac{-\frac{1}{4}+\frac{1}{2}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Tuhia anō te pūtake rua o te whakawehenga \frac{1}{4} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{4}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{\frac{1}{4}}{\left(-1^{2}-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Tāpirihia te -\frac{1}{4} ki te \frac{1}{2}, ka \frac{1}{4}.
\frac{\frac{1}{4}}{\left(-1-1\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{\frac{1}{4}}{\left(-2\right)^{3}-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Tangohia te 1 i te -1, ka -2.
\frac{\frac{1}{4}}{-8-475-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Tātaihia te -2 mā te pū o 3, kia riro ko -8.
\frac{\frac{1}{4}}{-483-\frac{3\times 4+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Tangohia te 475 i te -8, ka -483.
\frac{\frac{1}{4}}{-483-\frac{12+1}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Whakareatia te 3 ki te 4, ka 12.
\frac{\frac{1}{4}}{-483-\frac{13}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Tāpirihia te 12 ki te 1, ka 13.
\frac{\frac{1}{4}}{-\frac{1945}{4}}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Tangohia te \frac{13}{4} i te -483, ka -\frac{1945}{4}.
\frac{1}{4}\left(-\frac{4}{1945}\right)-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Whakawehe \frac{1}{4} ki te -\frac{1945}{4} mā te whakarea \frac{1}{4} ki te tau huripoki o -\frac{1945}{4}.
-\frac{1}{1945}-\sqrt{196}+\sqrt[3]{64}\times 0\times 1
Whakareatia te \frac{1}{4} ki te -\frac{4}{1945}, ka -\frac{1}{1945}.
-\frac{1}{1945}-14+\sqrt[3]{64}\times 0\times 1
Tātaitia te pūtakerua o 196 kia tae ki 14.
-\frac{27231}{1945}+\sqrt[3]{64}\times 0\times 1
Tangohia te 14 i te -\frac{1}{1945}, ka -\frac{27231}{1945}.
-\frac{27231}{1945}+4\times 0\times 1
Tātaitia te \sqrt[3]{64} kia tae ki 4.
-\frac{27231}{1945}+0\times 1
Whakareatia te 4 ki te 0, ka 0.
-\frac{27231}{1945}+0
Whakareatia te 0 ki te 1, ka 0.
-\frac{27231}{1945}
Tāpirihia te -\frac{27231}{1945} ki te 0, ka -\frac{27231}{1945}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}